Limits...
Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans.

Herget S, Toukach PV, Ranzinger R, Hull WE, Knirel YA, von der Lieth CW - BMC Struct. Biol. (2008)

Bottom Line: The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident.Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger.This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans.

View Article: PubMed Central - HTML - PubMed

Affiliation: Core Facility: Molecular Structure Analysis (W160), German Cancer Research Center, Heidelberg, Germany. s.herget@dkfz.de

ABSTRACT

Background: There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance.

Results: The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties.

Conclusion: For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans.

Show MeSH

Related in: MedlinePlus

Glycosidic linkages in mammalian carbohydrates. Frequency distribution of specific disaccharide linkages in mammalian carbohydrates. Plotted circle areas represent the relative frequencies for disaccharides formed from the 9 most common donors (children) and 9 most common acceptors (parents) in a defined glycosidic linkage (color code in legend). The areas of the circles are proportional to the relative abundances of disaccharide pairs, normalized to the total number of specific disaccharide pairs. The linkage codes α1-n and β1-n correspond to a linkage to any exocyclic carbon at the acceptor, e.g. C6 in hexopyranoses. For donor residues in keto form the linkage is at the anomeric carbon C2 instead of C1. For better visualization some of the circles for a given linkage are offset somewhat from the matrix coordinate corresponding to a given linkage type.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2543016&req=5

Figure 11: Glycosidic linkages in mammalian carbohydrates. Frequency distribution of specific disaccharide linkages in mammalian carbohydrates. Plotted circle areas represent the relative frequencies for disaccharides formed from the 9 most common donors (children) and 9 most common acceptors (parents) in a defined glycosidic linkage (color code in legend). The areas of the circles are proportional to the relative abundances of disaccharide pairs, normalized to the total number of specific disaccharide pairs. The linkage codes α1-n and β1-n correspond to a linkage to any exocyclic carbon at the acceptor, e.g. C6 in hexopyranoses. For donor residues in keto form the linkage is at the anomeric carbon C2 instead of C1. For better visualization some of the circles for a given linkage are offset somewhat from the matrix coordinate corresponding to a given linkage type.

Mentions: The analysis summarized in Fig. 11 demonstrates that the most prevalent linkages in mammals are D-Gal, D-Man and D-GlcNAc as β1–4 donors to D-GlcNAc; D-GlcNAc as β1–2 donor to D-Man; D-GlcNAc as β1–3 donor to D-Gal; and D-Man disaccharides with α1–3 or α1–6 linkages. These monosaccharides are sufficient to build up the common N- and O-glycan structures which dominate the mammalian database.


Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans.

Herget S, Toukach PV, Ranzinger R, Hull WE, Knirel YA, von der Lieth CW - BMC Struct. Biol. (2008)

Glycosidic linkages in mammalian carbohydrates. Frequency distribution of specific disaccharide linkages in mammalian carbohydrates. Plotted circle areas represent the relative frequencies for disaccharides formed from the 9 most common donors (children) and 9 most common acceptors (parents) in a defined glycosidic linkage (color code in legend). The areas of the circles are proportional to the relative abundances of disaccharide pairs, normalized to the total number of specific disaccharide pairs. The linkage codes α1-n and β1-n correspond to a linkage to any exocyclic carbon at the acceptor, e.g. C6 in hexopyranoses. For donor residues in keto form the linkage is at the anomeric carbon C2 instead of C1. For better visualization some of the circles for a given linkage are offset somewhat from the matrix coordinate corresponding to a given linkage type.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2543016&req=5

Figure 11: Glycosidic linkages in mammalian carbohydrates. Frequency distribution of specific disaccharide linkages in mammalian carbohydrates. Plotted circle areas represent the relative frequencies for disaccharides formed from the 9 most common donors (children) and 9 most common acceptors (parents) in a defined glycosidic linkage (color code in legend). The areas of the circles are proportional to the relative abundances of disaccharide pairs, normalized to the total number of specific disaccharide pairs. The linkage codes α1-n and β1-n correspond to a linkage to any exocyclic carbon at the acceptor, e.g. C6 in hexopyranoses. For donor residues in keto form the linkage is at the anomeric carbon C2 instead of C1. For better visualization some of the circles for a given linkage are offset somewhat from the matrix coordinate corresponding to a given linkage type.
Mentions: The analysis summarized in Fig. 11 demonstrates that the most prevalent linkages in mammals are D-Gal, D-Man and D-GlcNAc as β1–4 donors to D-GlcNAc; D-GlcNAc as β1–2 donor to D-Man; D-GlcNAc as β1–3 donor to D-Gal; and D-Man disaccharides with α1–3 or α1–6 linkages. These monosaccharides are sufficient to build up the common N- and O-glycan structures which dominate the mammalian database.

Bottom Line: The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident.Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger.This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans.

View Article: PubMed Central - HTML - PubMed

Affiliation: Core Facility: Molecular Structure Analysis (W160), German Cancer Research Center, Heidelberg, Germany. s.herget@dkfz.de

ABSTRACT

Background: There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance.

Results: The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties.

Conclusion: For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans.

Show MeSH
Related in: MedlinePlus