Limits...
Transcriptional profiling of putative human epithelial stem cells.

Koçer SS, Djurić PM, Bugallo MF, Simon SR, Matic M - BMC Genomics (2008)

Bottom Line: This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells.Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes.The generated data base may serve those working with other human epithelial tissue progenitors.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY, USA. Salih.Kocer@yale.edu

ABSTRACT

Background: Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC) class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells.

Results: Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-kappaB are downregulated/inhibited in MHC negative basal cells.

Conclusion: This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells may be enriched for stem cells. This study is the first comprehensive gene expression profile of putative human epithelial stem cells and their progeny that were isolated directly from neonatal foreskin tissue. Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes. The generated data base may serve those working with other human epithelial tissue progenitors.

Show MeSH

Related in: MedlinePlus

NF-κB activity in MHCI negative and MHCI positive cells. (A) A representative flow cytometry analysis of the expression of MHCI and NF-κB subunit RelA/p65 proteins showing that epidermal cells that exhibit low expression of RelA/p65 also exhibit lack/low expression of MHCI. The geometrical mean channel fluorescence of the populations is indicated. (B) Single positive control for PE. (C) Single positive control for FITC. (D) Secondary control.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2536675&req=5

Figure 6: NF-κB activity in MHCI negative and MHCI positive cells. (A) A representative flow cytometry analysis of the expression of MHCI and NF-κB subunit RelA/p65 proteins showing that epidermal cells that exhibit low expression of RelA/p65 also exhibit lack/low expression of MHCI. The geometrical mean channel fluorescence of the populations is indicated. (B) Single positive control for PE. (C) Single positive control for FITC. (D) Secondary control.

Mentions: It has been shown that Notch1 signaling pathway activates NF-κB pathway and upregulates subunits of NF-κB and its targets [56-58]. Thus, we investigated whether the levels of activity of NF-κB pathway, which is downstream of Notch1 pathway, differ in MHCI- and MHCI+ cells. First, we analyzed the expression of NF-κB subunit RelA in MHCI- and MHCI+ cells and found a positive correlation between the expression of NF-κB subunit RelA and MHCI (Figure 6). Since both MHCI molecules and NF-κB subunits are targets of NF-κB pathway, this result suggested that similar to the Notch1 pathway, NF-κB pathway is downregulated in MHCI- cells.


Transcriptional profiling of putative human epithelial stem cells.

Koçer SS, Djurić PM, Bugallo MF, Simon SR, Matic M - BMC Genomics (2008)

NF-κB activity in MHCI negative and MHCI positive cells. (A) A representative flow cytometry analysis of the expression of MHCI and NF-κB subunit RelA/p65 proteins showing that epidermal cells that exhibit low expression of RelA/p65 also exhibit lack/low expression of MHCI. The geometrical mean channel fluorescence of the populations is indicated. (B) Single positive control for PE. (C) Single positive control for FITC. (D) Secondary control.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2536675&req=5

Figure 6: NF-κB activity in MHCI negative and MHCI positive cells. (A) A representative flow cytometry analysis of the expression of MHCI and NF-κB subunit RelA/p65 proteins showing that epidermal cells that exhibit low expression of RelA/p65 also exhibit lack/low expression of MHCI. The geometrical mean channel fluorescence of the populations is indicated. (B) Single positive control for PE. (C) Single positive control for FITC. (D) Secondary control.
Mentions: It has been shown that Notch1 signaling pathway activates NF-κB pathway and upregulates subunits of NF-κB and its targets [56-58]. Thus, we investigated whether the levels of activity of NF-κB pathway, which is downstream of Notch1 pathway, differ in MHCI- and MHCI+ cells. First, we analyzed the expression of NF-κB subunit RelA in MHCI- and MHCI+ cells and found a positive correlation between the expression of NF-κB subunit RelA and MHCI (Figure 6). Since both MHCI molecules and NF-κB subunits are targets of NF-κB pathway, this result suggested that similar to the Notch1 pathway, NF-κB pathway is downregulated in MHCI- cells.

Bottom Line: This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells.Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes.The generated data base may serve those working with other human epithelial tissue progenitors.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY, USA. Salih.Kocer@yale.edu

ABSTRACT

Background: Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC) class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells.

Results: Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-kappaB are downregulated/inhibited in MHC negative basal cells.

Conclusion: This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells may be enriched for stem cells. This study is the first comprehensive gene expression profile of putative human epithelial stem cells and their progeny that were isolated directly from neonatal foreskin tissue. Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes. The generated data base may serve those working with other human epithelial tissue progenitors.

Show MeSH
Related in: MedlinePlus