Limits...
Sucrose exposure in early life alters adult motivation and weight gain.

Frazier CR, Mason P, Zhuang X, Beeler JA - PLoS ONE (2008)

Bottom Line: Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it.These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low.Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

View Article: PubMed Central - PubMed

Affiliation: Committee on Neurobiology, University of Chicago, Chicago, Illinois, USA.

ABSTRACT
The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a 'thrifty genotype,' an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this 'obesogenic' environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a 'thrifty genotype' and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

Show MeSH

Related in: MedlinePlus

High sugar/high fat dietary challenge.(a) Percent weight gain 3-weeks prior to (left) and during (right) the 3-week HS/HF exposure period in adulthood. (b) Body weight at the beginning and subsequent three weeks of HS/HF dietary options. (c) Metabolic efficiency as gram body weight increase per kcal consumed across the HS/HF dietary challenge. (d) Weekly consumption of standard chow (solid lines) and HS/HF options (dashed lines). N = 5–7; ±SEM, * p<.05.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2529404&req=5

pone-0003221-g005: High sugar/high fat dietary challenge.(a) Percent weight gain 3-weeks prior to (left) and during (right) the 3-week HS/HF exposure period in adulthood. (b) Body weight at the beginning and subsequent three weeks of HS/HF dietary options. (c) Metabolic efficiency as gram body weight increase per kcal consumed across the HS/HF dietary challenge. (d) Weekly consumption of standard chow (solid lines) and HS/HF options (dashed lines). N = 5–7; ±SEM, * p<.05.

Mentions: To directly assess vulnerability to obesity, we measured weight gain when mice had access to freely available high-sugar/high-fat (HS/HF) dietary options. Prior to testing, there was no difference in weight between the groups with no exposure and unlimited exposure to sucrose during early life (F(1,10) = 0.14, p = 0.72). We singly housed the mice and after a one-week acclimation period provided both standard chow as well as HS/HF options consisting of Nestlé® butterscotch, peanut butter, milk and white chocolate chips for three weeks. We found that mice that had unlimited exposure to sucrose when they were young gained more weight in this environment than those animals that did not have access to sucrose during development (Figure 5a; HS/HF weight gain, F(1,10) = 5.84, p = 0.0362; Figure 5b; group X week, F(3,30) = 3.78, p = 0.0206). Though both male and female mice exposed to unlimited sucrose gained more weight than controls in this condition, the effect may be more robust in females (17% and 12% increase over controls in females and males, respectively). While there was no difference between groups in consumption of either the HS/HF food (Figure 5d, dashed lines, F(1,10) = 1.0, p = 0.34) or standard chow (Figure 5d, solid lines, F(1,10) = 0.332, p = 0.577), the sucrose-exposed mice exhibited greater efficiency at storing energy as indicated by weight gained per kcal consumed (Figure 5c, F(1,10) = 5.326, p = 0.0437). Consistent with the sucrose preference test, in an environment where little cost was associated with acquiring the high sugar option, both sucrose exposed and non exposed groups equally preferred the HS/HF diet (as percentage of total consumption, unlimited, 67.1%; no sugar, 71.0%; F(1,10) = 0.551, p = 0.474). Singly housing mice during the dietary challenge is unlikely to have suppressed behavioral differences between the groups as mice were also singly housed during sucrose preference testing where they exhibited behavioral differences.


Sucrose exposure in early life alters adult motivation and weight gain.

Frazier CR, Mason P, Zhuang X, Beeler JA - PLoS ONE (2008)

High sugar/high fat dietary challenge.(a) Percent weight gain 3-weeks prior to (left) and during (right) the 3-week HS/HF exposure period in adulthood. (b) Body weight at the beginning and subsequent three weeks of HS/HF dietary options. (c) Metabolic efficiency as gram body weight increase per kcal consumed across the HS/HF dietary challenge. (d) Weekly consumption of standard chow (solid lines) and HS/HF options (dashed lines). N = 5–7; ±SEM, * p<.05.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2529404&req=5

pone-0003221-g005: High sugar/high fat dietary challenge.(a) Percent weight gain 3-weeks prior to (left) and during (right) the 3-week HS/HF exposure period in adulthood. (b) Body weight at the beginning and subsequent three weeks of HS/HF dietary options. (c) Metabolic efficiency as gram body weight increase per kcal consumed across the HS/HF dietary challenge. (d) Weekly consumption of standard chow (solid lines) and HS/HF options (dashed lines). N = 5–7; ±SEM, * p<.05.
Mentions: To directly assess vulnerability to obesity, we measured weight gain when mice had access to freely available high-sugar/high-fat (HS/HF) dietary options. Prior to testing, there was no difference in weight between the groups with no exposure and unlimited exposure to sucrose during early life (F(1,10) = 0.14, p = 0.72). We singly housed the mice and after a one-week acclimation period provided both standard chow as well as HS/HF options consisting of Nestlé® butterscotch, peanut butter, milk and white chocolate chips for three weeks. We found that mice that had unlimited exposure to sucrose when they were young gained more weight in this environment than those animals that did not have access to sucrose during development (Figure 5a; HS/HF weight gain, F(1,10) = 5.84, p = 0.0362; Figure 5b; group X week, F(3,30) = 3.78, p = 0.0206). Though both male and female mice exposed to unlimited sucrose gained more weight than controls in this condition, the effect may be more robust in females (17% and 12% increase over controls in females and males, respectively). While there was no difference between groups in consumption of either the HS/HF food (Figure 5d, dashed lines, F(1,10) = 1.0, p = 0.34) or standard chow (Figure 5d, solid lines, F(1,10) = 0.332, p = 0.577), the sucrose-exposed mice exhibited greater efficiency at storing energy as indicated by weight gained per kcal consumed (Figure 5c, F(1,10) = 5.326, p = 0.0437). Consistent with the sucrose preference test, in an environment where little cost was associated with acquiring the high sugar option, both sucrose exposed and non exposed groups equally preferred the HS/HF diet (as percentage of total consumption, unlimited, 67.1%; no sugar, 71.0%; F(1,10) = 0.551, p = 0.474). Singly housing mice during the dietary challenge is unlikely to have suppressed behavioral differences between the groups as mice were also singly housed during sucrose preference testing where they exhibited behavioral differences.

Bottom Line: Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it.These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low.Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

View Article: PubMed Central - PubMed

Affiliation: Committee on Neurobiology, University of Chicago, Chicago, Illinois, USA.

ABSTRACT
The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a 'thrifty genotype,' an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this 'obesogenic' environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a 'thrifty genotype' and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

Show MeSH
Related in: MedlinePlus