Limits...
Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening.

Negri AS, Prinsi B, Rossoni M, Failla O, Scienza A, Cocucci M, Espen L - BMC Genomics (2008)

Bottom Line: These results give new insights to the skin proteome evolution during ripening, thus underlining some interesting traits of this tissue.Moreover, these data emphasize the relevance of this tissue as a physical barrier exerting an important part in berry protection.In fact, the level of many proteins involved in (a)biotic stress responses remarkably changed through the five stages taken into consideration, thus suggesting that their expression may be developmentally regulated.

View Article: PubMed Central - HTML - PubMed

Affiliation: Dipartimento di Produzione Vegetale, University of Milan, via Celoria 2, 20133 Milano, Italy. alfredo.negri@unimi.it

ABSTRACT

Background: Grape ripening represents the third phase of the double sigmoidal curve of berry development and is characterized by deep changes in the organoleptic characteristics. In this process, the skin plays a central role in the synthesis of many compounds of interest (e.g. anthocyanins and aroma volatiles) and represents a fundamental protective barrier against damage by physical injuries and pathogen attacks. In order to improve the knowledge on the role of this tissue during ripening, changes in the protein expression in the skin of the red cultivar Barbera at five different stages from véraison to full maturation were studied by performing a comparative 2-DE analysis.

Results: The proteomic analysis revealed that 80 spots were differentially expressed throughout berry ripening. Applying a two-way hierarchical clustering analysis to these variations, a clear difference between the first two samplings (up to 14 days after véraison) and the following three (from 28 to 49 days after véraison) emerged, thus suggesting that the most relevant changes in protein expression occurred in the first weeks of ripening. By means of LC-ESI-MS/MS analysis, 69 proteins were characterized. Many of these variations were related to proteins involved in responses to stress (38%), glycolysis and gluconeogenesis (13%), C-compounds and carbohydrate metabolism (13%) and amino acid metabolism (10%).

Conclusion: These results give new insights to the skin proteome evolution during ripening, thus underlining some interesting traits of this tissue. In this view, we observed the ripening-related induction of many enzymes involved in primary metabolism, including those of the last five steps of the glycolytic pathway, which had been described as down-regulated in previous studies performed on whole fruit. Moreover, these data emphasize the relevance of this tissue as a physical barrier exerting an important part in berry protection. In fact, the level of many proteins involved in (a)biotic stress responses remarkably changed through the five stages taken into consideration, thus suggesting that their expression may be developmentally regulated.

Show MeSH

Related in: MedlinePlus

Schematic overview of the enzymes involved in sugar and organic acid metabolisms and their connection with some intermediary activities that changed in expression in grape berry skins during five different ripe stages from véraison until full ripening. The expression was evaluated by measuring relative spot volumes in the 2-DE analysis. Green or red arrows indicate whether the abundance of the identified proteins decreased or increased during ripening, respectively. IRV1, cell wall invertase, GIN1, vacuolar invertase; Susy, sucrose synthase; UGP, UDP-glucose-pyrophosphorylase; PGluM, phosphogluco-mutase; PGI, phosphogluco-isomerase; PFK, phosphofructokinase; ALD, aldolase; TPI, triosephosphate-isomerase; G3PDH, glyceraldehyde-3-phosphate-dehydrogenase; PGK, phosphoglycerate-kinase; PGlyM, phosphoglycerate-mutase; ENO, enolase; PK, pyruvate kinase; PDC, pyruvate decarboxylase; NADP-ME, NADP-dependent malic enzyme; ADH, alcohol dehydrogenase; PDH, Pyruvate dehydrogenase.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2529320&req=5

Figure 7: Schematic overview of the enzymes involved in sugar and organic acid metabolisms and their connection with some intermediary activities that changed in expression in grape berry skins during five different ripe stages from véraison until full ripening. The expression was evaluated by measuring relative spot volumes in the 2-DE analysis. Green or red arrows indicate whether the abundance of the identified proteins decreased or increased during ripening, respectively. IRV1, cell wall invertase, GIN1, vacuolar invertase; Susy, sucrose synthase; UGP, UDP-glucose-pyrophosphorylase; PGluM, phosphogluco-mutase; PGI, phosphogluco-isomerase; PFK, phosphofructokinase; ALD, aldolase; TPI, triosephosphate-isomerase; G3PDH, glyceraldehyde-3-phosphate-dehydrogenase; PGK, phosphoglycerate-kinase; PGlyM, phosphoglycerate-mutase; ENO, enolase; PK, pyruvate kinase; PDC, pyruvate decarboxylase; NADP-ME, NADP-dependent malic enzyme; ADH, alcohol dehydrogenase; PDH, Pyruvate dehydrogenase.

Mentions: Among the characterized proteins, many are involved in primary activities, such as glycolysis, gluconeogenesis, C-compounds and carbohydrate metabolism (Table 1 and Figure 3). A general picture of some traits of carbon metabolism showing the trend of these proteins is depicted in Figure 7.


Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening.

Negri AS, Prinsi B, Rossoni M, Failla O, Scienza A, Cocucci M, Espen L - BMC Genomics (2008)

Schematic overview of the enzymes involved in sugar and organic acid metabolisms and their connection with some intermediary activities that changed in expression in grape berry skins during five different ripe stages from véraison until full ripening. The expression was evaluated by measuring relative spot volumes in the 2-DE analysis. Green or red arrows indicate whether the abundance of the identified proteins decreased or increased during ripening, respectively. IRV1, cell wall invertase, GIN1, vacuolar invertase; Susy, sucrose synthase; UGP, UDP-glucose-pyrophosphorylase; PGluM, phosphogluco-mutase; PGI, phosphogluco-isomerase; PFK, phosphofructokinase; ALD, aldolase; TPI, triosephosphate-isomerase; G3PDH, glyceraldehyde-3-phosphate-dehydrogenase; PGK, phosphoglycerate-kinase; PGlyM, phosphoglycerate-mutase; ENO, enolase; PK, pyruvate kinase; PDC, pyruvate decarboxylase; NADP-ME, NADP-dependent malic enzyme; ADH, alcohol dehydrogenase; PDH, Pyruvate dehydrogenase.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2529320&req=5

Figure 7: Schematic overview of the enzymes involved in sugar and organic acid metabolisms and their connection with some intermediary activities that changed in expression in grape berry skins during five different ripe stages from véraison until full ripening. The expression was evaluated by measuring relative spot volumes in the 2-DE analysis. Green or red arrows indicate whether the abundance of the identified proteins decreased or increased during ripening, respectively. IRV1, cell wall invertase, GIN1, vacuolar invertase; Susy, sucrose synthase; UGP, UDP-glucose-pyrophosphorylase; PGluM, phosphogluco-mutase; PGI, phosphogluco-isomerase; PFK, phosphofructokinase; ALD, aldolase; TPI, triosephosphate-isomerase; G3PDH, glyceraldehyde-3-phosphate-dehydrogenase; PGK, phosphoglycerate-kinase; PGlyM, phosphoglycerate-mutase; ENO, enolase; PK, pyruvate kinase; PDC, pyruvate decarboxylase; NADP-ME, NADP-dependent malic enzyme; ADH, alcohol dehydrogenase; PDH, Pyruvate dehydrogenase.
Mentions: Among the characterized proteins, many are involved in primary activities, such as glycolysis, gluconeogenesis, C-compounds and carbohydrate metabolism (Table 1 and Figure 3). A general picture of some traits of carbon metabolism showing the trend of these proteins is depicted in Figure 7.

Bottom Line: These results give new insights to the skin proteome evolution during ripening, thus underlining some interesting traits of this tissue.Moreover, these data emphasize the relevance of this tissue as a physical barrier exerting an important part in berry protection.In fact, the level of many proteins involved in (a)biotic stress responses remarkably changed through the five stages taken into consideration, thus suggesting that their expression may be developmentally regulated.

View Article: PubMed Central - HTML - PubMed

Affiliation: Dipartimento di Produzione Vegetale, University of Milan, via Celoria 2, 20133 Milano, Italy. alfredo.negri@unimi.it

ABSTRACT

Background: Grape ripening represents the third phase of the double sigmoidal curve of berry development and is characterized by deep changes in the organoleptic characteristics. In this process, the skin plays a central role in the synthesis of many compounds of interest (e.g. anthocyanins and aroma volatiles) and represents a fundamental protective barrier against damage by physical injuries and pathogen attacks. In order to improve the knowledge on the role of this tissue during ripening, changes in the protein expression in the skin of the red cultivar Barbera at five different stages from véraison to full maturation were studied by performing a comparative 2-DE analysis.

Results: The proteomic analysis revealed that 80 spots were differentially expressed throughout berry ripening. Applying a two-way hierarchical clustering analysis to these variations, a clear difference between the first two samplings (up to 14 days after véraison) and the following three (from 28 to 49 days after véraison) emerged, thus suggesting that the most relevant changes in protein expression occurred in the first weeks of ripening. By means of LC-ESI-MS/MS analysis, 69 proteins were characterized. Many of these variations were related to proteins involved in responses to stress (38%), glycolysis and gluconeogenesis (13%), C-compounds and carbohydrate metabolism (13%) and amino acid metabolism (10%).

Conclusion: These results give new insights to the skin proteome evolution during ripening, thus underlining some interesting traits of this tissue. In this view, we observed the ripening-related induction of many enzymes involved in primary metabolism, including those of the last five steps of the glycolytic pathway, which had been described as down-regulated in previous studies performed on whole fruit. Moreover, these data emphasize the relevance of this tissue as a physical barrier exerting an important part in berry protection. In fact, the level of many proteins involved in (a)biotic stress responses remarkably changed through the five stages taken into consideration, thus suggesting that their expression may be developmentally regulated.

Show MeSH
Related in: MedlinePlus