Limits...
GATA4 and GATA5 are essential for heart and liver development in Xenopus embryos.

Haworth KE, Kotecha S, Mohun TJ, Latinkic BV - BMC Dev. Biol. (2008)

Bottom Line: In this study we show that in Xenopus embryos GATA5 is essential for early development of heart and liver precursors.In addition, we have found that in Xenopus embryos GATA4 is important for development of heart and liver primordia following their specification, and that in this role it might interact with GATA6.Our results suggest that GATA5 acts earlier than GATA4 to regulate development of heart and liver precursors, and indicate that one early direct target of GATA5 is homeobox gene Hex.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3US, Wales, UK. haworthk@cardiff.ac.uk

ABSTRACT

Background: GATA factors 4/5/6 have been implicated in the development of the heart and endodermal derivatives in vertebrates. Work in zebrafish has indicated that GATA5 is required for normal development earlier than GATA4/6. However, the GATA5 knockout mouse has no apparent embryonic phenotype, thereby questioning the importance of the gene for vertebrate development.

Results: In this study we show that in Xenopus embryos GATA5 is essential for early development of heart and liver precursors. In addition, we have found that in Xenopus embryos GATA4 is important for development of heart and liver primordia following their specification, and that in this role it might interact with GATA6.

Conclusion: Our results suggest that GATA5 acts earlier than GATA4 to regulate development of heart and liver precursors, and indicate that one early direct target of GATA5 is homeobox gene Hex.

Show MeSH
Summary of effects of GATA4 and GATA5 MOs in Xenopus embryos. A: Examples of phenotypic classes caused by GATA5 and GATA4 MOs. Ventral views of embryos injected with G5UTR MO or G4 MO are shown (50 ng/embryo). Heart and liver precursors have been revealed by MLC2 (BCIP) and FOR1 (BM purple) probes, respectively. FOR1 was developed first. Ventral views are shown, with anterior at the top. B, C: Summary of frequencies with which the heart and liver phenotypes were observed for GATA5 MOs (B) and for GATA4 MOs (C). The doses of splicing MOs are indicated and for other MOs are as in Figs. 1 and 4.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2526999&req=5

Figure 3: Summary of effects of GATA4 and GATA5 MOs in Xenopus embryos. A: Examples of phenotypic classes caused by GATA5 and GATA4 MOs. Ventral views of embryos injected with G5UTR MO or G4 MO are shown (50 ng/embryo). Heart and liver precursors have been revealed by MLC2 (BCIP) and FOR1 (BM purple) probes, respectively. FOR1 was developed first. Ventral views are shown, with anterior at the top. B, C: Summary of frequencies with which the heart and liver phenotypes were observed for GATA5 MOs (B) and for GATA4 MOs (C). The doses of splicing MOs are indicated and for other MOs are as in Figs. 1 and 4.

Mentions: An additional non-overlapping translation-blocking MO, G5UTR also caused deficiency in heart and liver tissue (Fig. 3). However, G5UTR MO was less effective (27/69 severely affected embryos; Fig. 3B), requiring a 10 times greater dose then G5 MO to produce a similar phenotype. The difference in efficiency between these MOs might reflect the different location of their target sequences along the GATA5 mRNA: the G5 MO target is immediately downstream of the START codon, whereas the G5UTR MO interacts with its target 8 nt upstream (Additional Fig. 1), and its' efficiency might be affected by the 5'UTR secondary structure.


GATA4 and GATA5 are essential for heart and liver development in Xenopus embryos.

Haworth KE, Kotecha S, Mohun TJ, Latinkic BV - BMC Dev. Biol. (2008)

Summary of effects of GATA4 and GATA5 MOs in Xenopus embryos. A: Examples of phenotypic classes caused by GATA5 and GATA4 MOs. Ventral views of embryos injected with G5UTR MO or G4 MO are shown (50 ng/embryo). Heart and liver precursors have been revealed by MLC2 (BCIP) and FOR1 (BM purple) probes, respectively. FOR1 was developed first. Ventral views are shown, with anterior at the top. B, C: Summary of frequencies with which the heart and liver phenotypes were observed for GATA5 MOs (B) and for GATA4 MOs (C). The doses of splicing MOs are indicated and for other MOs are as in Figs. 1 and 4.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2526999&req=5

Figure 3: Summary of effects of GATA4 and GATA5 MOs in Xenopus embryos. A: Examples of phenotypic classes caused by GATA5 and GATA4 MOs. Ventral views of embryos injected with G5UTR MO or G4 MO are shown (50 ng/embryo). Heart and liver precursors have been revealed by MLC2 (BCIP) and FOR1 (BM purple) probes, respectively. FOR1 was developed first. Ventral views are shown, with anterior at the top. B, C: Summary of frequencies with which the heart and liver phenotypes were observed for GATA5 MOs (B) and for GATA4 MOs (C). The doses of splicing MOs are indicated and for other MOs are as in Figs. 1 and 4.
Mentions: An additional non-overlapping translation-blocking MO, G5UTR also caused deficiency in heart and liver tissue (Fig. 3). However, G5UTR MO was less effective (27/69 severely affected embryos; Fig. 3B), requiring a 10 times greater dose then G5 MO to produce a similar phenotype. The difference in efficiency between these MOs might reflect the different location of their target sequences along the GATA5 mRNA: the G5 MO target is immediately downstream of the START codon, whereas the G5UTR MO interacts with its target 8 nt upstream (Additional Fig. 1), and its' efficiency might be affected by the 5'UTR secondary structure.

Bottom Line: In this study we show that in Xenopus embryos GATA5 is essential for early development of heart and liver precursors.In addition, we have found that in Xenopus embryos GATA4 is important for development of heart and liver primordia following their specification, and that in this role it might interact with GATA6.Our results suggest that GATA5 acts earlier than GATA4 to regulate development of heart and liver precursors, and indicate that one early direct target of GATA5 is homeobox gene Hex.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3US, Wales, UK. haworthk@cardiff.ac.uk

ABSTRACT

Background: GATA factors 4/5/6 have been implicated in the development of the heart and endodermal derivatives in vertebrates. Work in zebrafish has indicated that GATA5 is required for normal development earlier than GATA4/6. However, the GATA5 knockout mouse has no apparent embryonic phenotype, thereby questioning the importance of the gene for vertebrate development.

Results: In this study we show that in Xenopus embryos GATA5 is essential for early development of heart and liver precursors. In addition, we have found that in Xenopus embryos GATA4 is important for development of heart and liver primordia following their specification, and that in this role it might interact with GATA6.

Conclusion: Our results suggest that GATA5 acts earlier than GATA4 to regulate development of heart and liver precursors, and indicate that one early direct target of GATA5 is homeobox gene Hex.

Show MeSH