Limits...
An open label study to determine the effects of an oral proteolytic enzyme system on whey protein concentrate metabolism in healthy males.

Oben J, Kothari SC, Anderson ML - J Int Soc Sports Nutr (2008)

Bottom Line: After baseline subtraction the mean AUC was significantly (p </= 0.05) greater in each TG compared the corresponding CG.Total serum amino acid (TSAA) levels were significantly greater in each TG compared the corresponding CG.The N2 balance was significantly higher in each TG compared to the corresponding CG, but not significantly different between each CG and between each TG.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratory of Nutrition and Nutritional Biochemistry, Department of Biochemistry, Univerisity of Yaounde I, Careroon. juliusoben@hotmail.com

ABSTRACT

Background: Current research suggests that protein intake of 1.5 - 2.8 g/kg/day (3.5 times the current recommended daily allowance) is effective and safe for individuals trying to increase or maintain lean muscle mass. To achieve these levels of daily protein consumption, supplementing the diet with processed whey protein concentrate (WPC) in liquid form has become a popular choice for many people. Some products have a suggested serving size as high as 50 g of protein. However, due to possible inhibition of endogenous digestive enzymes from over-processing and rapid small intestine transit time, the average amount of liquid WPC that is absorbed may be only 15 g. The combined effect of these factors may contribute to incomplete digestion, thereby limiting the absorption rate of protein before it reaches the ceacum and is eliminated as waste. The purpose of this study was to determine if Aminogen(R), a patented blend of digestive proteases from Aspergillus niger and Aspergillus oryzae, would significantly increase the in-vivo absorption rate of processed WPC over control values. It also investigated if any increase would be sufficient to significantly alter nitrogen (N2) balance and C-reactive protein (CRP) levels over control values as further evidence of increased WPC absorption rate.

Methods: Two groups of healthy male subjects were assigned a specified balanced diet before and after each of two legs of the study. Subjects served as their own controls. In the first leg each control group (CG) was dosed with 50 g of WPC following an overnight fast. Nine days later each test group (TG) was dosed following an overnight fast with 50 g of WPC containing either 2.5 g (A2.5) or 5 g (A5) of Aminogen(R). Blood samples were collected during each leg at 0 hr, 0.5 hr, 1 hr, 2 hr, 3 hr, 3.5 hr and 4 hr for amino acid (AA) and CRP analyses. The following 18 AAs were quantified: alanine, arginine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine. Urine was collected for 24 hours from 0 hr for total N2 analysis. Results are expressed as means +/- SEM. All significance and power testing on results was done at a level of alpha = 0.05. Area under the concentration time curve (AUC) was calculated using the trapezoidal rule. One-way analysis of variance (ANOVA-1) was done between CGs, between TGs and between time points. One-way repeated measures analysis of variance (ANOVA-1-RM) was done to compare CGs and TGs. Two-way analysis of variance (ANOVA-2) was performed on total serum amino acid (TSAA) levels, urine N2 levels and CRP levels between each CG and TG.

Results: After baseline subtraction the mean AUC was significantly (p

Conclusion: A patented blend of digestive proteases (Aminogen(R)) increased the absorption rate of processed WPC over controls, as measured by statistically significant increases in AUC, TSAA levels, ISAA levels and N2 balance. Significant decreases in CRP levels and fluxes in AA levels are also reported.

No MeSH data available.


Related in: MedlinePlus

Individual Amino Acid AUC 4 hr. Average percent area under the curve (AUC) differences between eighteen amino acids in CG-A2.5 (n = 21) and TG-A2.5 (n = 21) at 4 hr. Values are means ± SEM. * Indicates significant difference (p = 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2500001&req=5

Figure 4: Individual Amino Acid AUC 4 hr. Average percent area under the curve (AUC) differences between eighteen amino acids in CG-A2.5 (n = 21) and TG-A2.5 (n = 21) at 4 hr. Values are means ± SEM. * Indicates significant difference (p = 0.05).

Mentions: The relative percent AUC for each of the eighteen AAs analyzed in CG-A2.5 and TG-A2.5 at 0 hr and 4 hr is shown in Figure 3 and 4. The sum of the average area percent for each AA equals 100% of the AUC. ANOVA-1 statistical analysis between CG-A2.5 and TG-A2.5 at 0 hr showed arginine, aspartic acid, cysteine, methionine, phenylalanine, serine, tryptophan and valine (8 of 18) to be significantly (p ≤ 0.05) different. No significant differences were found between alanine, glutamine, glycine, histidine, isoleucine, leucine, lysine, proline, threonine and tyrosine. At 0 hr statistically significant differences between CG-A5 and TG-A5 include arginine, aspartic acid, glycine, histidine, isoleucine, lysine, methionine, proline, serine and threonine (10 of 18). No significant differences were found between alanine, glutamine, cysteine, leucine, phenylalanine, tryptophan, tyrosine and valine. At 4 hr statistically significant differences between CG-A2.5 and TG-A2.5 include alanine, arginine, aspartic acid, cysteine, glutamine, isoleucine, leucine, lysine, phenylalanine, proline, threonine, tryptophan, tyrosine and valine (14 of 18). No significant differences were found in glycine, histidine, methionine and serine. At 4 hr statistically significant differences between CG-A5 and TG-A5 include alanine, arginine, aspartic acid, cysteine, glutamine, glycine, histidine, isoleucine, leucine, lysine, phenylalanine, proline, threonine, tryptophan, tyrosine and valine (16 of 18). Methionine and serine were the only two amino acids that were not significantly different.


An open label study to determine the effects of an oral proteolytic enzyme system on whey protein concentrate metabolism in healthy males.

Oben J, Kothari SC, Anderson ML - J Int Soc Sports Nutr (2008)

Individual Amino Acid AUC 4 hr. Average percent area under the curve (AUC) differences between eighteen amino acids in CG-A2.5 (n = 21) and TG-A2.5 (n = 21) at 4 hr. Values are means ± SEM. * Indicates significant difference (p = 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2500001&req=5

Figure 4: Individual Amino Acid AUC 4 hr. Average percent area under the curve (AUC) differences between eighteen amino acids in CG-A2.5 (n = 21) and TG-A2.5 (n = 21) at 4 hr. Values are means ± SEM. * Indicates significant difference (p = 0.05).
Mentions: The relative percent AUC for each of the eighteen AAs analyzed in CG-A2.5 and TG-A2.5 at 0 hr and 4 hr is shown in Figure 3 and 4. The sum of the average area percent for each AA equals 100% of the AUC. ANOVA-1 statistical analysis between CG-A2.5 and TG-A2.5 at 0 hr showed arginine, aspartic acid, cysteine, methionine, phenylalanine, serine, tryptophan and valine (8 of 18) to be significantly (p ≤ 0.05) different. No significant differences were found between alanine, glutamine, glycine, histidine, isoleucine, leucine, lysine, proline, threonine and tyrosine. At 0 hr statistically significant differences between CG-A5 and TG-A5 include arginine, aspartic acid, glycine, histidine, isoleucine, lysine, methionine, proline, serine and threonine (10 of 18). No significant differences were found between alanine, glutamine, cysteine, leucine, phenylalanine, tryptophan, tyrosine and valine. At 4 hr statistically significant differences between CG-A2.5 and TG-A2.5 include alanine, arginine, aspartic acid, cysteine, glutamine, isoleucine, leucine, lysine, phenylalanine, proline, threonine, tryptophan, tyrosine and valine (14 of 18). No significant differences were found in glycine, histidine, methionine and serine. At 4 hr statistically significant differences between CG-A5 and TG-A5 include alanine, arginine, aspartic acid, cysteine, glutamine, glycine, histidine, isoleucine, leucine, lysine, phenylalanine, proline, threonine, tryptophan, tyrosine and valine (16 of 18). Methionine and serine were the only two amino acids that were not significantly different.

Bottom Line: After baseline subtraction the mean AUC was significantly (p </= 0.05) greater in each TG compared the corresponding CG.Total serum amino acid (TSAA) levels were significantly greater in each TG compared the corresponding CG.The N2 balance was significantly higher in each TG compared to the corresponding CG, but not significantly different between each CG and between each TG.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratory of Nutrition and Nutritional Biochemistry, Department of Biochemistry, Univerisity of Yaounde I, Careroon. juliusoben@hotmail.com

ABSTRACT

Background: Current research suggests that protein intake of 1.5 - 2.8 g/kg/day (3.5 times the current recommended daily allowance) is effective and safe for individuals trying to increase or maintain lean muscle mass. To achieve these levels of daily protein consumption, supplementing the diet with processed whey protein concentrate (WPC) in liquid form has become a popular choice for many people. Some products have a suggested serving size as high as 50 g of protein. However, due to possible inhibition of endogenous digestive enzymes from over-processing and rapid small intestine transit time, the average amount of liquid WPC that is absorbed may be only 15 g. The combined effect of these factors may contribute to incomplete digestion, thereby limiting the absorption rate of protein before it reaches the ceacum and is eliminated as waste. The purpose of this study was to determine if Aminogen(R), a patented blend of digestive proteases from Aspergillus niger and Aspergillus oryzae, would significantly increase the in-vivo absorption rate of processed WPC over control values. It also investigated if any increase would be sufficient to significantly alter nitrogen (N2) balance and C-reactive protein (CRP) levels over control values as further evidence of increased WPC absorption rate.

Methods: Two groups of healthy male subjects were assigned a specified balanced diet before and after each of two legs of the study. Subjects served as their own controls. In the first leg each control group (CG) was dosed with 50 g of WPC following an overnight fast. Nine days later each test group (TG) was dosed following an overnight fast with 50 g of WPC containing either 2.5 g (A2.5) or 5 g (A5) of Aminogen(R). Blood samples were collected during each leg at 0 hr, 0.5 hr, 1 hr, 2 hr, 3 hr, 3.5 hr and 4 hr for amino acid (AA) and CRP analyses. The following 18 AAs were quantified: alanine, arginine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine. Urine was collected for 24 hours from 0 hr for total N2 analysis. Results are expressed as means +/- SEM. All significance and power testing on results was done at a level of alpha = 0.05. Area under the concentration time curve (AUC) was calculated using the trapezoidal rule. One-way analysis of variance (ANOVA-1) was done between CGs, between TGs and between time points. One-way repeated measures analysis of variance (ANOVA-1-RM) was done to compare CGs and TGs. Two-way analysis of variance (ANOVA-2) was performed on total serum amino acid (TSAA) levels, urine N2 levels and CRP levels between each CG and TG.

Results: After baseline subtraction the mean AUC was significantly (p

Conclusion: A patented blend of digestive proteases (Aminogen(R)) increased the absorption rate of processed WPC over controls, as measured by statistically significant increases in AUC, TSAA levels, ISAA levels and N2 balance. Significant decreases in CRP levels and fluxes in AA levels are also reported.

No MeSH data available.


Related in: MedlinePlus