Limits...
Unsaturated long-chain fatty acids induce the respiratory burst of human neutrophils and monocytes in whole blood.

Jüttner B, Kröplin J, Coldewey SM, Witt L, Osthaus WA, Weilbach C, Scheinichen D - Nutr Metab (Lond) (2008)

Bottom Line: Whole blood samples were incubated with LCT (Intralipid(R)), LCT/MCT (Lipofundin(R)) and LCT-MUFA (ClinOleic(R)) in three concentrations (0.06, 0.3 and 0.6 mg ml-1) for time periods up to one hour.We concluded that parenteral nutrition containing unsaturated oleic (C18:1) and linoleic (C18:2) acid can induce respiratory burst of neutrophils and monocytes, resulting in an elevated risk of tissue damage by the uncontrolled production of reactive oxygen species.Contradictory observations reported in previous studies may in part be the result of different methods used to determine hydrogen peroxide production.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Anaesthesiology, Hannover Medical School, Germany. juettner.bjoern@mh-hannover.de.

ABSTRACT

Background: It is increasingly recognized that infectious complications in patients treated with total parenteral nutrition (TPN) may be caused by altered immune responses. Neutrophils and monocytes are the first line of defence against bacterial and fungal infection through superoxide anion production during the respiratory burst. To characterize the impact of three different types of lipid solutions that are applied as part of TPN formulations, we investigated the unstimulated respiratory burst activation of neutrophils and monocytes in whole blood.

Methods: Whole blood samples were incubated with LCT (Intralipid(R)), LCT/MCT (Lipofundin(R)) and LCT-MUFA (ClinOleic(R)) in three concentrations (0.06, 0.3 and 0.6 mg ml-1) for time periods up to one hour. Hydrogen peroxide production during the respiratory burst of neutrophils and monocytes was measured by flow cytometry.

Results: LCT and LCT-MUFA induced a hydrogen peroxide production in neutrophils and monocytes without presence of a physiological stimulus in contrast to LCT/MCT.

Conclusion: We concluded that parenteral nutrition containing unsaturated oleic (C18:1) and linoleic (C18:2) acid can induce respiratory burst of neutrophils and monocytes, resulting in an elevated risk of tissue damage by the uncontrolled production of reactive oxygen species. Contradictory observations reported in previous studies may in part be the result of different methods used to determine hydrogen peroxide production.

No MeSH data available.


Related in: MedlinePlus

Flow cytometry analysis. (A) Live gate on leukocyte DNA (M1) during acquisition: Discrimination of leukocytes from debris, erythrocytes, platelets and bacteria. (B) Neutrophils and monocytes were identified by setting a polygonal gate in a forward scatter/sideward scatter dot plot. The negative control sample (C) was used to define a marker for rhodamine 123 (FL 1) where less than 5% of the cells would be positive. The percentage of neutrophils having produced hydrogen peroxide following lipid incubation was determined by counting the number of rhodamine positive cells above this marker position and by dividing it by the whole number of events observed (D).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2483276&req=5

Figure 1: Flow cytometry analysis. (A) Live gate on leukocyte DNA (M1) during acquisition: Discrimination of leukocytes from debris, erythrocytes, platelets and bacteria. (B) Neutrophils and monocytes were identified by setting a polygonal gate in a forward scatter/sideward scatter dot plot. The negative control sample (C) was used to define a marker for rhodamine 123 (FL 1) where less than 5% of the cells would be positive. The percentage of neutrophils having produced hydrogen peroxide following lipid incubation was determined by counting the number of rhodamine positive cells above this marker position and by dividing it by the whole number of events observed (D).

Mentions: Cells were analyzed by flow cytometry using the blue-green excitation light (488 nm argon-ion laser). Twenty thousand events were included for each measurement. According to the method described by Hirt et al. [17] a linear region on the PI peak signal in the histogram of fluorescence (FL) 3 was set to discriminate between nuclear (i.e. leukocytes) and non-nuclear cells (debrids, erythrocytes, platelets) and between human diploid and haploid cells (bacteria), respectively, Figure 1A. Neutrophils and monocytes were identified by setting a polygonal gate in a forward scatter/sideward scatter dot plot, Figure 1B. The negative control sample was used to define a marker for rhodamine (FL 1) where less than 5% of the events would be positive, Figure 1C. The percentage of cells having produced hydrogen peroxide was determined by counting the number of rhodamine positive cells above this marker position and by dividing it by the whole number of events observed, Figure 1D.


Unsaturated long-chain fatty acids induce the respiratory burst of human neutrophils and monocytes in whole blood.

Jüttner B, Kröplin J, Coldewey SM, Witt L, Osthaus WA, Weilbach C, Scheinichen D - Nutr Metab (Lond) (2008)

Flow cytometry analysis. (A) Live gate on leukocyte DNA (M1) during acquisition: Discrimination of leukocytes from debris, erythrocytes, platelets and bacteria. (B) Neutrophils and monocytes were identified by setting a polygonal gate in a forward scatter/sideward scatter dot plot. The negative control sample (C) was used to define a marker for rhodamine 123 (FL 1) where less than 5% of the cells would be positive. The percentage of neutrophils having produced hydrogen peroxide following lipid incubation was determined by counting the number of rhodamine positive cells above this marker position and by dividing it by the whole number of events observed (D).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2483276&req=5

Figure 1: Flow cytometry analysis. (A) Live gate on leukocyte DNA (M1) during acquisition: Discrimination of leukocytes from debris, erythrocytes, platelets and bacteria. (B) Neutrophils and monocytes were identified by setting a polygonal gate in a forward scatter/sideward scatter dot plot. The negative control sample (C) was used to define a marker for rhodamine 123 (FL 1) where less than 5% of the cells would be positive. The percentage of neutrophils having produced hydrogen peroxide following lipid incubation was determined by counting the number of rhodamine positive cells above this marker position and by dividing it by the whole number of events observed (D).
Mentions: Cells were analyzed by flow cytometry using the blue-green excitation light (488 nm argon-ion laser). Twenty thousand events were included for each measurement. According to the method described by Hirt et al. [17] a linear region on the PI peak signal in the histogram of fluorescence (FL) 3 was set to discriminate between nuclear (i.e. leukocytes) and non-nuclear cells (debrids, erythrocytes, platelets) and between human diploid and haploid cells (bacteria), respectively, Figure 1A. Neutrophils and monocytes were identified by setting a polygonal gate in a forward scatter/sideward scatter dot plot, Figure 1B. The negative control sample was used to define a marker for rhodamine (FL 1) where less than 5% of the events would be positive, Figure 1C. The percentage of cells having produced hydrogen peroxide was determined by counting the number of rhodamine positive cells above this marker position and by dividing it by the whole number of events observed, Figure 1D.

Bottom Line: Whole blood samples were incubated with LCT (Intralipid(R)), LCT/MCT (Lipofundin(R)) and LCT-MUFA (ClinOleic(R)) in three concentrations (0.06, 0.3 and 0.6 mg ml-1) for time periods up to one hour.We concluded that parenteral nutrition containing unsaturated oleic (C18:1) and linoleic (C18:2) acid can induce respiratory burst of neutrophils and monocytes, resulting in an elevated risk of tissue damage by the uncontrolled production of reactive oxygen species.Contradictory observations reported in previous studies may in part be the result of different methods used to determine hydrogen peroxide production.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Anaesthesiology, Hannover Medical School, Germany. juettner.bjoern@mh-hannover.de.

ABSTRACT

Background: It is increasingly recognized that infectious complications in patients treated with total parenteral nutrition (TPN) may be caused by altered immune responses. Neutrophils and monocytes are the first line of defence against bacterial and fungal infection through superoxide anion production during the respiratory burst. To characterize the impact of three different types of lipid solutions that are applied as part of TPN formulations, we investigated the unstimulated respiratory burst activation of neutrophils and monocytes in whole blood.

Methods: Whole blood samples were incubated with LCT (Intralipid(R)), LCT/MCT (Lipofundin(R)) and LCT-MUFA (ClinOleic(R)) in three concentrations (0.06, 0.3 and 0.6 mg ml-1) for time periods up to one hour. Hydrogen peroxide production during the respiratory burst of neutrophils and monocytes was measured by flow cytometry.

Results: LCT and LCT-MUFA induced a hydrogen peroxide production in neutrophils and monocytes without presence of a physiological stimulus in contrast to LCT/MCT.

Conclusion: We concluded that parenteral nutrition containing unsaturated oleic (C18:1) and linoleic (C18:2) acid can induce respiratory burst of neutrophils and monocytes, resulting in an elevated risk of tissue damage by the uncontrolled production of reactive oxygen species. Contradictory observations reported in previous studies may in part be the result of different methods used to determine hydrogen peroxide production.

No MeSH data available.


Related in: MedlinePlus