Limits...
Mammographic density. Measurement of mammographic density.

Yaffe MJ - Breast Cancer Res. (2008)

Bottom Line: Research is now underway to create and validate techniques for volumetric measurement of density.It is also possible to measure breast density with other imaging modalities, such as ultrasound and MRI, which do not require the use of ionizing radiation and may, therefore, be more suitable for use in young women or where it is desirable to perform measurements more frequently.In this article, the techniques for measurement of density are reviewed and some consideration is given to their strengths and limitations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Imaging Research Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada. martin.yaffe@sunnybrook.ca

ABSTRACT
Mammographic density has been strongly associated with increased risk of breast cancer. Furthermore, density is inversely correlated with the accuracy of mammography and, therefore, a measurement of density conveys information about the difficulty of detecting cancer in a mammogram. Initial methods for assessing mammographic density were entirely subjective and qualitative; however, in the past few years methods have been developed to provide more objective and quantitative density measurements. Research is now underway to create and validate techniques for volumetric measurement of density. It is also possible to measure breast density with other imaging modalities, such as ultrasound and MRI, which do not require the use of ionizing radiation and may, therefore, be more suitable for use in young women or where it is desirable to perform measurements more frequently. In this article, the techniques for measurement of density are reviewed and some consideration is given to their strengths and limitations.

Show MeSH

Related in: MedlinePlus

A six-category system for classifying mammographic density. The categories describe the fraction of fibroglandular tissue in the breast as judged by an observer and are: (a) 0, (b) <10%, (c) 10–25%, (d) 26–50%, (e) 51–75%, (f) >75%. Reproduced from [1] with permission from American Association for Cancer Research.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2481498&req=5

Figure 1: A six-category system for classifying mammographic density. The categories describe the fraction of fibroglandular tissue in the breast as judged by an observer and are: (a) 0, (b) <10%, (c) 10–25%, (d) 26–50%, (e) 51–75%, (f) >75%. Reproduced from [1] with permission from American Association for Cancer Research.

Mentions: Figure 1 illustrates six mammographic images of the breast [1]. It is seen that the breast has a wide range of appearance on mammography, associated with differences in tissue composition. Radiographically the breast consists mainly of two component tissues: fibroglandular tissue and fat. Fibroglandular tissue is a mixture of fibrous connective tissue (the stroma) and the functional (or glandular) epithelial cells that line the ducts of the breast (the parenchyma). Fat has a lower X-ray attenuation coefficient (Figure 2) than fibroglandular tissue and, therefore, is more transparent to X-rays. Thus, regions of fat appear darker on a radiograph of the breast. Regions of brightness associated with fibroglandular tissue are referred to as 'mammographic density'. From the pattern of brightness in a mammographic image, the relative prevalence of these tissues in the breast can be inferred.


Mammographic density. Measurement of mammographic density.

Yaffe MJ - Breast Cancer Res. (2008)

A six-category system for classifying mammographic density. The categories describe the fraction of fibroglandular tissue in the breast as judged by an observer and are: (a) 0, (b) <10%, (c) 10–25%, (d) 26–50%, (e) 51–75%, (f) >75%. Reproduced from [1] with permission from American Association for Cancer Research.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2481498&req=5

Figure 1: A six-category system for classifying mammographic density. The categories describe the fraction of fibroglandular tissue in the breast as judged by an observer and are: (a) 0, (b) <10%, (c) 10–25%, (d) 26–50%, (e) 51–75%, (f) >75%. Reproduced from [1] with permission from American Association for Cancer Research.
Mentions: Figure 1 illustrates six mammographic images of the breast [1]. It is seen that the breast has a wide range of appearance on mammography, associated with differences in tissue composition. Radiographically the breast consists mainly of two component tissues: fibroglandular tissue and fat. Fibroglandular tissue is a mixture of fibrous connective tissue (the stroma) and the functional (or glandular) epithelial cells that line the ducts of the breast (the parenchyma). Fat has a lower X-ray attenuation coefficient (Figure 2) than fibroglandular tissue and, therefore, is more transparent to X-rays. Thus, regions of fat appear darker on a radiograph of the breast. Regions of brightness associated with fibroglandular tissue are referred to as 'mammographic density'. From the pattern of brightness in a mammographic image, the relative prevalence of these tissues in the breast can be inferred.

Bottom Line: Research is now underway to create and validate techniques for volumetric measurement of density.It is also possible to measure breast density with other imaging modalities, such as ultrasound and MRI, which do not require the use of ionizing radiation and may, therefore, be more suitable for use in young women or where it is desirable to perform measurements more frequently.In this article, the techniques for measurement of density are reviewed and some consideration is given to their strengths and limitations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Imaging Research Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada. martin.yaffe@sunnybrook.ca

ABSTRACT
Mammographic density has been strongly associated with increased risk of breast cancer. Furthermore, density is inversely correlated with the accuracy of mammography and, therefore, a measurement of density conveys information about the difficulty of detecting cancer in a mammogram. Initial methods for assessing mammographic density were entirely subjective and qualitative; however, in the past few years methods have been developed to provide more objective and quantitative density measurements. Research is now underway to create and validate techniques for volumetric measurement of density. It is also possible to measure breast density with other imaging modalities, such as ultrasound and MRI, which do not require the use of ionizing radiation and may, therefore, be more suitable for use in young women or where it is desirable to perform measurements more frequently. In this article, the techniques for measurement of density are reviewed and some consideration is given to their strengths and limitations.

Show MeSH
Related in: MedlinePlus