Limits...
Autoantibodies as potential biomarkers for breast cancer.

Zhong L, Ge K, Zu JC, Zhao LH, Shen WK, Wang JF, Zhang XG, Gao X, Hu W, Yen Y, Kernstine KH - Breast Cancer Res. (2008)

Bottom Line: We harvested 100 putative tumor-associated phage clones after biopan enrichment.BLAST results of the three proteins showed great matches to ASB-9, SERAC1, and RELT.Rather than one autoantibody, a panel of autoantibodies appears preferable to achieve superior accuracy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Molecular Biology, Hebei University College of Life Sciences, 180 Wusi Road, Baoding 071002, China. lzhong@coh.org

ABSTRACT

Introduction: Only a limited number of tumor markers for breast cancer are currently available. Antibodies to tumor-associated proteins may expand the number of available tumor markers for breast cancer and may be used together in a serum profile to enhance sensitivity and specificity.

Methods: In the present study, we interrogated a breast cancer cDNA T7 phage library for tumor-associated proteins using biopan enrichment techniques with sera from normal individuals and from breast cancer patients. The enrichment of tumor-associated proteins after biopanning was tested using a plaque-lift assay and immunochemical detection. The putative tumor-associated phage clones were collected for PCR and sequencing analysis. Unique and open reading frame phage-expressed proteins were then used to develop phage protein ELISAs to measure corresponding autoantibodies using 87 breast cancer patients and 87 normal serum samples. A logistic regression model and leave-one-out validation were used to evaluate predictive accuracies with a single marker as well as with combined markers. Identities of those selected proteins were revealed through the sequence BLAST program.

Results: We harvested 100 putative tumor-associated phage clones after biopan enrichment. Sequencing analysis revealed that six phage proteins were inframe and unique. Antibodies to these six phage-expressed proteins were measured by ELISAs, and the results showed that three of the phage clones had statistical significance in discriminating patients from normal individuals. BLAST results of the three proteins showed great matches to ASB-9, SERAC1, and RELT. Measurements of the three predictive phage proteins were combined in a logistic regression model that achieved 80% sensitivity and 100% specificity in prediction of sample status, whereas leave-one-out validation achieved 77.0% sensitivity and 82.8% specificity among 87 patient samples and 87 control samples. Receiver operating characteristic curve analysis and the leave-one-out method both showed that combined measurements of the three antibodies were more predictive of disease than any of the single antibodies studied, underscoring the importance of identifying multiple potential markers.

Conclusion: Serum autoantibody profiling is a promising approach for early detection and diagnosis of breast cancer. Rather than one autoantibody, a panel of autoantibodies appears preferable to achieve superior accuracy. Further refinements will need to be made to further improve the accuracy. Once refined, the assay must be applied to a prospective patient population to demonstrate applicability.

Show MeSH

Related in: MedlinePlus

ELISA of phage-expressed proteins with individual serum samples. Antigen ELISAs were developed with ASB-9-expressing, SERAC1-expressing and RELT-expressing phages. The assays were performed with serially diluted (1:20 to 1:10,240) individual serum samples that were not used in the biopan, to confirm measurements were representative of an antigen-antibody affinity reaction. Representative curves from three patients are shown for each protein. Empty (no inserts) T7 phages were used to show the nonspecific reaction backgrounds.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2481487&req=5

Figure 2: ELISA of phage-expressed proteins with individual serum samples. Antigen ELISAs were developed with ASB-9-expressing, SERAC1-expressing and RELT-expressing phages. The assays were performed with serially diluted (1:20 to 1:10,240) individual serum samples that were not used in the biopan, to confirm measurements were representative of an antigen-antibody affinity reaction. Representative curves from three patients are shown for each protein. Empty (no inserts) T7 phages were used to show the nonspecific reaction backgrounds.

Mentions: To confirm antibody affinity in individual serum samples for specific proteins, serum was assayed in limiting dilution from 1:20 to 1:10,240 by ELISA constructed with phages ASB-9, SERAC1 and RELT, and T7 empty phages as control. Absorbance values for each of the three antibodies showed decreasing absorbance over serial dilutions in sera of three patients, indicating the antigen-antibody binding affinities. T7 empty phage controls exhibited background signals to patient sera (Figure 2).


Autoantibodies as potential biomarkers for breast cancer.

Zhong L, Ge K, Zu JC, Zhao LH, Shen WK, Wang JF, Zhang XG, Gao X, Hu W, Yen Y, Kernstine KH - Breast Cancer Res. (2008)

ELISA of phage-expressed proteins with individual serum samples. Antigen ELISAs were developed with ASB-9-expressing, SERAC1-expressing and RELT-expressing phages. The assays were performed with serially diluted (1:20 to 1:10,240) individual serum samples that were not used in the biopan, to confirm measurements were representative of an antigen-antibody affinity reaction. Representative curves from three patients are shown for each protein. Empty (no inserts) T7 phages were used to show the nonspecific reaction backgrounds.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2481487&req=5

Figure 2: ELISA of phage-expressed proteins with individual serum samples. Antigen ELISAs were developed with ASB-9-expressing, SERAC1-expressing and RELT-expressing phages. The assays were performed with serially diluted (1:20 to 1:10,240) individual serum samples that were not used in the biopan, to confirm measurements were representative of an antigen-antibody affinity reaction. Representative curves from three patients are shown for each protein. Empty (no inserts) T7 phages were used to show the nonspecific reaction backgrounds.
Mentions: To confirm antibody affinity in individual serum samples for specific proteins, serum was assayed in limiting dilution from 1:20 to 1:10,240 by ELISA constructed with phages ASB-9, SERAC1 and RELT, and T7 empty phages as control. Absorbance values for each of the three antibodies showed decreasing absorbance over serial dilutions in sera of three patients, indicating the antigen-antibody binding affinities. T7 empty phage controls exhibited background signals to patient sera (Figure 2).

Bottom Line: We harvested 100 putative tumor-associated phage clones after biopan enrichment.BLAST results of the three proteins showed great matches to ASB-9, SERAC1, and RELT.Rather than one autoantibody, a panel of autoantibodies appears preferable to achieve superior accuracy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Molecular Biology, Hebei University College of Life Sciences, 180 Wusi Road, Baoding 071002, China. lzhong@coh.org

ABSTRACT

Introduction: Only a limited number of tumor markers for breast cancer are currently available. Antibodies to tumor-associated proteins may expand the number of available tumor markers for breast cancer and may be used together in a serum profile to enhance sensitivity and specificity.

Methods: In the present study, we interrogated a breast cancer cDNA T7 phage library for tumor-associated proteins using biopan enrichment techniques with sera from normal individuals and from breast cancer patients. The enrichment of tumor-associated proteins after biopanning was tested using a plaque-lift assay and immunochemical detection. The putative tumor-associated phage clones were collected for PCR and sequencing analysis. Unique and open reading frame phage-expressed proteins were then used to develop phage protein ELISAs to measure corresponding autoantibodies using 87 breast cancer patients and 87 normal serum samples. A logistic regression model and leave-one-out validation were used to evaluate predictive accuracies with a single marker as well as with combined markers. Identities of those selected proteins were revealed through the sequence BLAST program.

Results: We harvested 100 putative tumor-associated phage clones after biopan enrichment. Sequencing analysis revealed that six phage proteins were inframe and unique. Antibodies to these six phage-expressed proteins were measured by ELISAs, and the results showed that three of the phage clones had statistical significance in discriminating patients from normal individuals. BLAST results of the three proteins showed great matches to ASB-9, SERAC1, and RELT. Measurements of the three predictive phage proteins were combined in a logistic regression model that achieved 80% sensitivity and 100% specificity in prediction of sample status, whereas leave-one-out validation achieved 77.0% sensitivity and 82.8% specificity among 87 patient samples and 87 control samples. Receiver operating characteristic curve analysis and the leave-one-out method both showed that combined measurements of the three antibodies were more predictive of disease than any of the single antibodies studied, underscoring the importance of identifying multiple potential markers.

Conclusion: Serum autoantibody profiling is a promising approach for early detection and diagnosis of breast cancer. Rather than one autoantibody, a panel of autoantibodies appears preferable to achieve superior accuracy. Further refinements will need to be made to further improve the accuracy. Once refined, the assay must be applied to a prospective patient population to demonstrate applicability.

Show MeSH
Related in: MedlinePlus