Limits...
Association of HMGB1 polymorphisms with outcome in patients with systemic inflammatory response syndrome.

Kornblit B, Munthe-Fog L, Madsen HO, Strøm J, Vindeløv L, Garred P - Crit Care (2008)

Bottom Line: Whether genetic variation in the human HMGB1 gene is associated with disease susceptibility is unknown.Outcome parameters according to different HMGB1 genotypes were compared.Carriage of an exon 4 variant (982C>T) was significantly associated with an increased number of SIRS criteria, a higher Simplified Acute Physiology Score II score, a lower PaO2/FiO2 ratio and lower serum HMGB1 levels (P = 0.01), and with a significantly higher probability of early death due to infection (P = 0.04).

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Clinical Immunology - 7631, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark. brian.kornblit@rh.regionh.dk

ABSTRACT

Introduction: High mobility group box 1 protein (HMGB1) is a pleiotropic cytokine, recently implicated in the pathophysiology of the systemic inflammatory response syndrome (SIRS) and sepsis. Data from experimental sepsis models show that administration of anti-HMGB1 antibodies significantly decreased mortality, even when administration was delayed for 24 hours, providing a window of opportunity for therapeutic intervention if transferred into a clinical setting. Whether genetic variation in the human HMGB1 gene is associated with disease susceptibility is unknown.

Methods: We sequenced the HMGB1 gene in 239 prospectively monitored patients with SIRS admitted to an intensive care unit and we measured the corresponding HMGB1 serum concentrations. Blood donors served as control individuals. Outcome parameters according to different HMGB1 genotypes were compared.

Results: Homozygosity and heterozygosity for a promoter variant (-1377delA) was associated with a decreased overall 4-year survival (15% versus 44%, hazard ratio = 1.80; P = 0.01) and with a decreased number of SIRS criteria. Carriage of an exon 4 variant (982C>T) was significantly associated with an increased number of SIRS criteria, a higher Simplified Acute Physiology Score II score, a lower PaO2/FiO2 ratio and lower serum HMGB1 levels (P = 0.01), and with a significantly higher probability of early death due to infection (P = 0.04). HMGB1 was undetectable in the control individuals.

Conclusion: The present article is the first report of clinical implications of variation in the human HMGB1 gene. Two polymorphisms were determined as significant risk factors associated with early and late mortality, which may provide insight into the molecular background of SIRS and sepsis, suggesting a possible role for HMGB1 genetics in future prognostic evaluation.

Show MeSH

Related in: MedlinePlus

Schematic illustration of the high mobility group box 1 protein gene locus. The most common inferred haplotypes (frequency > 3%) in both the control population and the systemic inflammatory response syndrome (SIRS) population are shown. Modified from Ferrari and colleagues [41]. Bold, location of polymorphisms; italic, location of mutations; underline, mutations only found in the control population; solid boxes, exons I to V. *Haplotype was statistically more frequent in the SIRS population (P = 0.006) as compared with the control population.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2481482&req=5

Figure 1: Schematic illustration of the high mobility group box 1 protein gene locus. The most common inferred haplotypes (frequency > 3%) in both the control population and the systemic inflammatory response syndrome (SIRS) population are shown. Modified from Ferrari and colleagues [41]. Bold, location of polymorphisms; italic, location of mutations; underline, mutations only found in the control population; solid boxes, exons I to V. *Haplotype was statistically more frequent in the SIRS population (P = 0.006) as compared with the control population.

Mentions: The -196C>A, 1779T>G and 1822insT mutations were not observed in the SIRS patients, while the 1888insT mutation was observed in two SIRS patients and was therefore treated as a polymorphism, although not meeting the formal requirement of an allele frequency ≥ 1%. The novel polymorphism 1747delT, entailing a deletion of a single thymine in a sequence of 11 thymine nucleotides in intron 1 (Figure 1), was observed in the SIRS patients. The control subjects were reanalysed and, upon reverse sequencing, four individuals were found heterozygous for 1747delT. Two novel genetic variants, 1808C>G and 4519_4521delGAT, were identified once in two different SIRS patients, and were therefore classified as mutations. The 4519_4521delGAT entailed a deletion of the trinucleotide sequence GAT in exon 5 (Figure 1), leading to deletion of an aspartate amino acid from the acidic tail of the HMGB1 protein.


Association of HMGB1 polymorphisms with outcome in patients with systemic inflammatory response syndrome.

Kornblit B, Munthe-Fog L, Madsen HO, Strøm J, Vindeløv L, Garred P - Crit Care (2008)

Schematic illustration of the high mobility group box 1 protein gene locus. The most common inferred haplotypes (frequency > 3%) in both the control population and the systemic inflammatory response syndrome (SIRS) population are shown. Modified from Ferrari and colleagues [41]. Bold, location of polymorphisms; italic, location of mutations; underline, mutations only found in the control population; solid boxes, exons I to V. *Haplotype was statistically more frequent in the SIRS population (P = 0.006) as compared with the control population.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2481482&req=5

Figure 1: Schematic illustration of the high mobility group box 1 protein gene locus. The most common inferred haplotypes (frequency > 3%) in both the control population and the systemic inflammatory response syndrome (SIRS) population are shown. Modified from Ferrari and colleagues [41]. Bold, location of polymorphisms; italic, location of mutations; underline, mutations only found in the control population; solid boxes, exons I to V. *Haplotype was statistically more frequent in the SIRS population (P = 0.006) as compared with the control population.
Mentions: The -196C>A, 1779T>G and 1822insT mutations were not observed in the SIRS patients, while the 1888insT mutation was observed in two SIRS patients and was therefore treated as a polymorphism, although not meeting the formal requirement of an allele frequency ≥ 1%. The novel polymorphism 1747delT, entailing a deletion of a single thymine in a sequence of 11 thymine nucleotides in intron 1 (Figure 1), was observed in the SIRS patients. The control subjects were reanalysed and, upon reverse sequencing, four individuals were found heterozygous for 1747delT. Two novel genetic variants, 1808C>G and 4519_4521delGAT, were identified once in two different SIRS patients, and were therefore classified as mutations. The 4519_4521delGAT entailed a deletion of the trinucleotide sequence GAT in exon 5 (Figure 1), leading to deletion of an aspartate amino acid from the acidic tail of the HMGB1 protein.

Bottom Line: Whether genetic variation in the human HMGB1 gene is associated with disease susceptibility is unknown.Outcome parameters according to different HMGB1 genotypes were compared.Carriage of an exon 4 variant (982C>T) was significantly associated with an increased number of SIRS criteria, a higher Simplified Acute Physiology Score II score, a lower PaO2/FiO2 ratio and lower serum HMGB1 levels (P = 0.01), and with a significantly higher probability of early death due to infection (P = 0.04).

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Clinical Immunology - 7631, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark. brian.kornblit@rh.regionh.dk

ABSTRACT

Introduction: High mobility group box 1 protein (HMGB1) is a pleiotropic cytokine, recently implicated in the pathophysiology of the systemic inflammatory response syndrome (SIRS) and sepsis. Data from experimental sepsis models show that administration of anti-HMGB1 antibodies significantly decreased mortality, even when administration was delayed for 24 hours, providing a window of opportunity for therapeutic intervention if transferred into a clinical setting. Whether genetic variation in the human HMGB1 gene is associated with disease susceptibility is unknown.

Methods: We sequenced the HMGB1 gene in 239 prospectively monitored patients with SIRS admitted to an intensive care unit and we measured the corresponding HMGB1 serum concentrations. Blood donors served as control individuals. Outcome parameters according to different HMGB1 genotypes were compared.

Results: Homozygosity and heterozygosity for a promoter variant (-1377delA) was associated with a decreased overall 4-year survival (15% versus 44%, hazard ratio = 1.80; P = 0.01) and with a decreased number of SIRS criteria. Carriage of an exon 4 variant (982C>T) was significantly associated with an increased number of SIRS criteria, a higher Simplified Acute Physiology Score II score, a lower PaO2/FiO2 ratio and lower serum HMGB1 levels (P = 0.01), and with a significantly higher probability of early death due to infection (P = 0.04). HMGB1 was undetectable in the control individuals.

Conclusion: The present article is the first report of clinical implications of variation in the human HMGB1 gene. Two polymorphisms were determined as significant risk factors associated with early and late mortality, which may provide insight into the molecular background of SIRS and sepsis, suggesting a possible role for HMGB1 genetics in future prognostic evaluation.

Show MeSH
Related in: MedlinePlus