Limits...
Modified cell cycle status in a mouse model of altered neuronal vulnerability (slow Wallerian degeneration; Wlds).

Wishart TM, Pemberton HN, James SR, McCabe CJ, Gillingwater TH - Genome Biol. (2008)

Bottom Line: These include the following: elevated nicotinamide adenine dinucleotide (NAD) levels associated with nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1; a part of the chimeric Wlds gene); altered mRNA expression levels of genes such as pituitary tumor transforming gene 1 (Pttg1); changes in the location/activity of the ubiquitin-proteasome machinery via binding to valosin-containing protein (VCP/p97); and modified synaptic expression of proteins such as ubiquitin-activating enzyme E1 (Ube1).We show that previous reports of diverse changes occurring downstream from Wlds expression converge upon modifications in cell cycle status.These data suggest a strong correlation between modified cell cycle pathways and altered vulnerability of axonal and synaptic compartments in postmitotic, terminally differentiated neurons.

View Article: PubMed Central - HTML - PubMed

Affiliation: Centre for Integrative Physiology, University of Edinburgh Medical School, Edinburgh, UK.

ABSTRACT

Background: Altered neuronal vulnerability underlies many diseases of the human nervous system, resulting in degeneration and loss of neurons. The neuroprotective slow Wallerian degeneration (Wlds) mutation delays degeneration in axonal and synaptic compartments of neurons following a wide range of traumatic and disease-inducing stimuli, providing a powerful experimental tool with which to investigate modulation of neuronal vulnerability. Although the mechanisms through which Wlds confers neuroprotection remain unclear, a diverse range of downstream modifications, incorporating several genes/pathways, have been implicated. These include the following: elevated nicotinamide adenine dinucleotide (NAD) levels associated with nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1; a part of the chimeric Wlds gene); altered mRNA expression levels of genes such as pituitary tumor transforming gene 1 (Pttg1); changes in the location/activity of the ubiquitin-proteasome machinery via binding to valosin-containing protein (VCP/p97); and modified synaptic expression of proteins such as ubiquitin-activating enzyme E1 (Ube1).

Results: Wlds expression in mouse cerebellum and HEK293 cells induced robust increases in a broad spectrum of cell cycle-related genes. Both NAD-dependent and Pttg1-dependent pathways were responsible for mediating different subsets of these alterations, also incorporating changes in VCP/p97 localization and Ube1 expression. Cell proliferation rates were not modified by Wlds, suggesting that later mitotic phases of the cell cycle remained unaltered. We also demonstrate that Wlds concurrently altered endogenous cell stress pathways.

Conclusion: We report a novel cellular phenotype in cells with altered neuronal vulnerability. We show that previous reports of diverse changes occurring downstream from Wlds expression converge upon modifications in cell cycle status. These data suggest a strong correlation between modified cell cycle pathways and altered vulnerability of axonal and synaptic compartments in postmitotic, terminally differentiated neurons.

Show MeSH

Related in: MedlinePlus

Upregulation of cell cycle genes in HEK293 cells treated with 1 mmol/l exogenous NAD. Three-dimensional bar chart taken from SuperArray analysis software (cell cycle SuperArray; see Materials and methods) showing fold difference in expression levels for 84 cell cycle related genes comparing vehicle treated HEK293 cells (control sample) with nicotinamide adenine dinucleotide (NAD) treated HEK293 cells (test sample). Individual genes with a greater than twofold expression change can be found in Table 2. NAD, nicotinamide adenine dinucleotide.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2481432&req=5

Figure 9: Upregulation of cell cycle genes in HEK293 cells treated with 1 mmol/l exogenous NAD. Three-dimensional bar chart taken from SuperArray analysis software (cell cycle SuperArray; see Materials and methods) showing fold difference in expression levels for 84 cell cycle related genes comparing vehicle treated HEK293 cells (control sample) with nicotinamide adenine dinucleotide (NAD) treated HEK293 cells (test sample). Individual genes with a greater than twofold expression change can be found in Table 2. NAD, nicotinamide adenine dinucleotide.

Mentions: Next, we investigated whether NAD-dependent pathways play a role in mediating cell cycle changes, because several recent studies have suggested that the Nmnat1 portion of the chimeric Wlds gene plays a significant role in conferring a neuroprotective phenotype by elevating NAD levels and increasing sirtuin activity [23-25]. To examine whether NAD pathways influence cell cycle changes observed in Wlds-expressing cells, we performed cell cycle pathway specific RT2 profiler PCR arrays (using human rather than mouse arrays; see Materials and methods [below]) on HEK293 cells treated with 1 mmol/l NAD applied exogenously to the culture medium. This NAD treatment has previously been shown to confer axonal protection in vitro [23] and to mediate selected Wlds-induced transcriptional changes [22]. Forty-eight out of the 84 genes examined exhibited greater than twofold changes in expression after NAD treatment. In a similar result to that obtained in the Wlds mouse cerebellar array experiments, the vast majority (47 out of the 84) of modified genes had increased expression levels in the NAD treated cells (Figure 9 and Table 2). Only one cell cycle related gene appeared to be suppressed greater than twofold by NAD (Figure 9). A direct comparison of SuperArray data from Wlds cerebellum and NAD-treated HEK293 cells showed changes of a similar magnitude for eight out of the nine genes examined (Figure 10a; only nine candidate genes could be directly compared due to their presence/alteration on both arrays). Increases in protein expression levels of Pttg1, BRCA2, BRCA1, and H2Ax in NSC34 cells treated with 1 mmol/l NAD for 4 days confirmed that these NAD-induced changes extend beyond those included on the SuperArray, extend to the protein level, and can occur in neuronal cells (Figure 10b). These data suggest that elevated exogenous NAD levels can mimic many, but importantly not all, Wlds-induced cell cycle changes.


Modified cell cycle status in a mouse model of altered neuronal vulnerability (slow Wallerian degeneration; Wlds).

Wishart TM, Pemberton HN, James SR, McCabe CJ, Gillingwater TH - Genome Biol. (2008)

Upregulation of cell cycle genes in HEK293 cells treated with 1 mmol/l exogenous NAD. Three-dimensional bar chart taken from SuperArray analysis software (cell cycle SuperArray; see Materials and methods) showing fold difference in expression levels for 84 cell cycle related genes comparing vehicle treated HEK293 cells (control sample) with nicotinamide adenine dinucleotide (NAD) treated HEK293 cells (test sample). Individual genes with a greater than twofold expression change can be found in Table 2. NAD, nicotinamide adenine dinucleotide.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2481432&req=5

Figure 9: Upregulation of cell cycle genes in HEK293 cells treated with 1 mmol/l exogenous NAD. Three-dimensional bar chart taken from SuperArray analysis software (cell cycle SuperArray; see Materials and methods) showing fold difference in expression levels for 84 cell cycle related genes comparing vehicle treated HEK293 cells (control sample) with nicotinamide adenine dinucleotide (NAD) treated HEK293 cells (test sample). Individual genes with a greater than twofold expression change can be found in Table 2. NAD, nicotinamide adenine dinucleotide.
Mentions: Next, we investigated whether NAD-dependent pathways play a role in mediating cell cycle changes, because several recent studies have suggested that the Nmnat1 portion of the chimeric Wlds gene plays a significant role in conferring a neuroprotective phenotype by elevating NAD levels and increasing sirtuin activity [23-25]. To examine whether NAD pathways influence cell cycle changes observed in Wlds-expressing cells, we performed cell cycle pathway specific RT2 profiler PCR arrays (using human rather than mouse arrays; see Materials and methods [below]) on HEK293 cells treated with 1 mmol/l NAD applied exogenously to the culture medium. This NAD treatment has previously been shown to confer axonal protection in vitro [23] and to mediate selected Wlds-induced transcriptional changes [22]. Forty-eight out of the 84 genes examined exhibited greater than twofold changes in expression after NAD treatment. In a similar result to that obtained in the Wlds mouse cerebellar array experiments, the vast majority (47 out of the 84) of modified genes had increased expression levels in the NAD treated cells (Figure 9 and Table 2). Only one cell cycle related gene appeared to be suppressed greater than twofold by NAD (Figure 9). A direct comparison of SuperArray data from Wlds cerebellum and NAD-treated HEK293 cells showed changes of a similar magnitude for eight out of the nine genes examined (Figure 10a; only nine candidate genes could be directly compared due to their presence/alteration on both arrays). Increases in protein expression levels of Pttg1, BRCA2, BRCA1, and H2Ax in NSC34 cells treated with 1 mmol/l NAD for 4 days confirmed that these NAD-induced changes extend beyond those included on the SuperArray, extend to the protein level, and can occur in neuronal cells (Figure 10b). These data suggest that elevated exogenous NAD levels can mimic many, but importantly not all, Wlds-induced cell cycle changes.

Bottom Line: These include the following: elevated nicotinamide adenine dinucleotide (NAD) levels associated with nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1; a part of the chimeric Wlds gene); altered mRNA expression levels of genes such as pituitary tumor transforming gene 1 (Pttg1); changes in the location/activity of the ubiquitin-proteasome machinery via binding to valosin-containing protein (VCP/p97); and modified synaptic expression of proteins such as ubiquitin-activating enzyme E1 (Ube1).We show that previous reports of diverse changes occurring downstream from Wlds expression converge upon modifications in cell cycle status.These data suggest a strong correlation between modified cell cycle pathways and altered vulnerability of axonal and synaptic compartments in postmitotic, terminally differentiated neurons.

View Article: PubMed Central - HTML - PubMed

Affiliation: Centre for Integrative Physiology, University of Edinburgh Medical School, Edinburgh, UK.

ABSTRACT

Background: Altered neuronal vulnerability underlies many diseases of the human nervous system, resulting in degeneration and loss of neurons. The neuroprotective slow Wallerian degeneration (Wlds) mutation delays degeneration in axonal and synaptic compartments of neurons following a wide range of traumatic and disease-inducing stimuli, providing a powerful experimental tool with which to investigate modulation of neuronal vulnerability. Although the mechanisms through which Wlds confers neuroprotection remain unclear, a diverse range of downstream modifications, incorporating several genes/pathways, have been implicated. These include the following: elevated nicotinamide adenine dinucleotide (NAD) levels associated with nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1; a part of the chimeric Wlds gene); altered mRNA expression levels of genes such as pituitary tumor transforming gene 1 (Pttg1); changes in the location/activity of the ubiquitin-proteasome machinery via binding to valosin-containing protein (VCP/p97); and modified synaptic expression of proteins such as ubiquitin-activating enzyme E1 (Ube1).

Results: Wlds expression in mouse cerebellum and HEK293 cells induced robust increases in a broad spectrum of cell cycle-related genes. Both NAD-dependent and Pttg1-dependent pathways were responsible for mediating different subsets of these alterations, also incorporating changes in VCP/p97 localization and Ube1 expression. Cell proliferation rates were not modified by Wlds, suggesting that later mitotic phases of the cell cycle remained unaltered. We also demonstrate that Wlds concurrently altered endogenous cell stress pathways.

Conclusion: We report a novel cellular phenotype in cells with altered neuronal vulnerability. We show that previous reports of diverse changes occurring downstream from Wlds expression converge upon modifications in cell cycle status. These data suggest a strong correlation between modified cell cycle pathways and altered vulnerability of axonal and synaptic compartments in postmitotic, terminally differentiated neurons.

Show MeSH
Related in: MedlinePlus