Limits...
In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs.

Ashley DM, Riffkin CD, Lovric MM, Mikeska T, Dobrovic A, Maxwell JA, Friedman HS, Drummond KJ, Kaye AH, Gan HK, Johns TG, Hawkins CJ - Br. J. Cancer (2008)

Bottom Line: Cross-linked TRAIL, but not soluble TRAIL, killed both normal cell types and cells from three tumours.This study highlights the widespread resistance of glioma cells to TRAIL-based agents, but suggests that a minority of high-grade glioma patients may benefit from particular combinations of TRAIL and chemotherapy drugs.In vitro sensitivity assays may help identify effective drug combinations for individual glioma patients.

View Article: PubMed Central - PubMed

Affiliation: Children's Cancer Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.

ABSTRACT
TRAIL/Apo-2L has shown promise as an anti-glioma drug, based on investigations of TRAIL sensitivity in established glioma cell lines, but it is not known how accurately TRAIL signalling pathways of glioma cells in vivo are reproduced in these cell lines in vitro. To replicate as closely as possible the in vivo behaviour of malignant glioma cells, 17 early passage glioma cell lines and 5 freshly resected gliomas were exposed to TRAIL-based agents and/or chemotherapeutic drugs. Normal human hepatocytes and astrocytes and established glioma cell lines were also tested. Cross-linked TRAIL, but not soluble TRAIL, killed both normal cell types and cells from three tumours. Cells from only one glioma were killed by soluble TRAIL, although only inefficiently. High concentrations of cisplatin were lethal to glioma cells, hepatocytes and astrocytes. Isolated combinations of TRAIL and chemotherapy drugs were more toxic to particular gliomas than normal cells, but no combination was generally selective for glioma cells. This study highlights the widespread resistance of glioma cells to TRAIL-based agents, but suggests that a minority of high-grade glioma patients may benefit from particular combinations of TRAIL and chemotherapy drugs. In vitro sensitivity assays may help identify effective drug combinations for individual glioma patients.

Show MeSH

Related in: MedlinePlus

In vitro responses of glioma cells, astrocytes and hepatocytes to TRAIL. (A) Cells from the indicated early passage or established glioma cell lines, ex vivo gliomas, normal astrocytes or normal hepatocytes were incubated in vitro with TRAIL or with anti-DR5 antibody. Black triangles indicate high and low drug concentrations, when applicable (see Table 2 and the Materials and Methods section). Survival was assayed using the CellTiter Glo kit and depicted using ‘bubble' graphs. The areas of the circles denote net survival following each treatment, relative to untreated cells (set at 100%, left column). Small circles indicate efficient killing, large circles reflect survival and/or proliferation, as illustrated in the graphical legend. Glioma assays were performed in duplicate (data are represented by circles). Four replicates were performed for hepatocytes and eight replicates for astrocytes. For astrocyte and hepatocyte data, grey circles depicting average survival are overlaid upon black circles indicating average survival plus standard error. (B) DEVDase activity in D2247 and D2302 cells was monitored 6 h following treatment with the specified TRAIL formulations, anti-DR5 antibody or normal media.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2480982&req=5

fig1: In vitro responses of glioma cells, astrocytes and hepatocytes to TRAIL. (A) Cells from the indicated early passage or established glioma cell lines, ex vivo gliomas, normal astrocytes or normal hepatocytes were incubated in vitro with TRAIL or with anti-DR5 antibody. Black triangles indicate high and low drug concentrations, when applicable (see Table 2 and the Materials and Methods section). Survival was assayed using the CellTiter Glo kit and depicted using ‘bubble' graphs. The areas of the circles denote net survival following each treatment, relative to untreated cells (set at 100%, left column). Small circles indicate efficient killing, large circles reflect survival and/or proliferation, as illustrated in the graphical legend. Glioma assays were performed in duplicate (data are represented by circles). Four replicates were performed for hepatocytes and eight replicates for astrocytes. For astrocyte and hepatocyte data, grey circles depicting average survival are overlaid upon black circles indicating average survival plus standard error. (B) DEVDase activity in D2247 and D2302 cells was monitored 6 h following treatment with the specified TRAIL formulations, anti-DR5 antibody or normal media.

Mentions: Cells from freshly resected gliomas, minimally passaged glioma cell lines, established glioma cell lines, normal astrocytes and hepatocytes were exposed to three formulations of TRAIL or an agonistic antibody, alone or in combination with seven chemotherapy drugs. Table 1 provides details of the glioma cells used and the patients from whom they were obtained. The normal cells tolerated exposure to ‘hepatosafe' soluble TRAIL, the anti-DR5 antibody and the lower dose of cross-linked TRAIL (Figure 1A). Higher concentrations of cross-linked TRAIL and superkiller TRAIL were lethal to both types of normal cells, with hepatocytes being especially sensitive. As sole agents, the TRAIL formulations and anti-receptor antibody induced negligible cell death in most of the glioma samples tested. Only one of the early passage lines, D2247, was efficiently killed by the two cross-linked formulations of TRAIL and the anti-DR5 antibody. This line also displayed intermediate sensitivity to soluble TRAIL. Two other lines, D2234 and D2245, were somewhat sensitive to the cross-linked TRAIL formulations and the agonistic antibody, but not to soluble TRAIL. None of the ex vivo samples was substantially sensitive to any of the TRAIL-based treatments. As reported previously, LN18 and D270 were TRAIL-sensitive, but U373 was TRAIL-resistant (Hawkins, 2004). Consistent with the notion that apoptosis was responsible for the reductions in ATP levels observed in some drug-treated cells, caspase activity in D2247 cells but not in D2302 cells increased following exposure to TRAIL or anti-DR5 (Figure 1B).


In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs.

Ashley DM, Riffkin CD, Lovric MM, Mikeska T, Dobrovic A, Maxwell JA, Friedman HS, Drummond KJ, Kaye AH, Gan HK, Johns TG, Hawkins CJ - Br. J. Cancer (2008)

In vitro responses of glioma cells, astrocytes and hepatocytes to TRAIL. (A) Cells from the indicated early passage or established glioma cell lines, ex vivo gliomas, normal astrocytes or normal hepatocytes were incubated in vitro with TRAIL or with anti-DR5 antibody. Black triangles indicate high and low drug concentrations, when applicable (see Table 2 and the Materials and Methods section). Survival was assayed using the CellTiter Glo kit and depicted using ‘bubble' graphs. The areas of the circles denote net survival following each treatment, relative to untreated cells (set at 100%, left column). Small circles indicate efficient killing, large circles reflect survival and/or proliferation, as illustrated in the graphical legend. Glioma assays were performed in duplicate (data are represented by circles). Four replicates were performed for hepatocytes and eight replicates for astrocytes. For astrocyte and hepatocyte data, grey circles depicting average survival are overlaid upon black circles indicating average survival plus standard error. (B) DEVDase activity in D2247 and D2302 cells was monitored 6 h following treatment with the specified TRAIL formulations, anti-DR5 antibody or normal media.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2480982&req=5

fig1: In vitro responses of glioma cells, astrocytes and hepatocytes to TRAIL. (A) Cells from the indicated early passage or established glioma cell lines, ex vivo gliomas, normal astrocytes or normal hepatocytes were incubated in vitro with TRAIL or with anti-DR5 antibody. Black triangles indicate high and low drug concentrations, when applicable (see Table 2 and the Materials and Methods section). Survival was assayed using the CellTiter Glo kit and depicted using ‘bubble' graphs. The areas of the circles denote net survival following each treatment, relative to untreated cells (set at 100%, left column). Small circles indicate efficient killing, large circles reflect survival and/or proliferation, as illustrated in the graphical legend. Glioma assays were performed in duplicate (data are represented by circles). Four replicates were performed for hepatocytes and eight replicates for astrocytes. For astrocyte and hepatocyte data, grey circles depicting average survival are overlaid upon black circles indicating average survival plus standard error. (B) DEVDase activity in D2247 and D2302 cells was monitored 6 h following treatment with the specified TRAIL formulations, anti-DR5 antibody or normal media.
Mentions: Cells from freshly resected gliomas, minimally passaged glioma cell lines, established glioma cell lines, normal astrocytes and hepatocytes were exposed to three formulations of TRAIL or an agonistic antibody, alone or in combination with seven chemotherapy drugs. Table 1 provides details of the glioma cells used and the patients from whom they were obtained. The normal cells tolerated exposure to ‘hepatosafe' soluble TRAIL, the anti-DR5 antibody and the lower dose of cross-linked TRAIL (Figure 1A). Higher concentrations of cross-linked TRAIL and superkiller TRAIL were lethal to both types of normal cells, with hepatocytes being especially sensitive. As sole agents, the TRAIL formulations and anti-receptor antibody induced negligible cell death in most of the glioma samples tested. Only one of the early passage lines, D2247, was efficiently killed by the two cross-linked formulations of TRAIL and the anti-DR5 antibody. This line also displayed intermediate sensitivity to soluble TRAIL. Two other lines, D2234 and D2245, were somewhat sensitive to the cross-linked TRAIL formulations and the agonistic antibody, but not to soluble TRAIL. None of the ex vivo samples was substantially sensitive to any of the TRAIL-based treatments. As reported previously, LN18 and D270 were TRAIL-sensitive, but U373 was TRAIL-resistant (Hawkins, 2004). Consistent with the notion that apoptosis was responsible for the reductions in ATP levels observed in some drug-treated cells, caspase activity in D2247 cells but not in D2302 cells increased following exposure to TRAIL or anti-DR5 (Figure 1B).

Bottom Line: Cross-linked TRAIL, but not soluble TRAIL, killed both normal cell types and cells from three tumours.This study highlights the widespread resistance of glioma cells to TRAIL-based agents, but suggests that a minority of high-grade glioma patients may benefit from particular combinations of TRAIL and chemotherapy drugs.In vitro sensitivity assays may help identify effective drug combinations for individual glioma patients.

View Article: PubMed Central - PubMed

Affiliation: Children's Cancer Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.

ABSTRACT
TRAIL/Apo-2L has shown promise as an anti-glioma drug, based on investigations of TRAIL sensitivity in established glioma cell lines, but it is not known how accurately TRAIL signalling pathways of glioma cells in vivo are reproduced in these cell lines in vitro. To replicate as closely as possible the in vivo behaviour of malignant glioma cells, 17 early passage glioma cell lines and 5 freshly resected gliomas were exposed to TRAIL-based agents and/or chemotherapeutic drugs. Normal human hepatocytes and astrocytes and established glioma cell lines were also tested. Cross-linked TRAIL, but not soluble TRAIL, killed both normal cell types and cells from three tumours. Cells from only one glioma were killed by soluble TRAIL, although only inefficiently. High concentrations of cisplatin were lethal to glioma cells, hepatocytes and astrocytes. Isolated combinations of TRAIL and chemotherapy drugs were more toxic to particular gliomas than normal cells, but no combination was generally selective for glioma cells. This study highlights the widespread resistance of glioma cells to TRAIL-based agents, but suggests that a minority of high-grade glioma patients may benefit from particular combinations of TRAIL and chemotherapy drugs. In vitro sensitivity assays may help identify effective drug combinations for individual glioma patients.

Show MeSH
Related in: MedlinePlus