Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization.
Bottom Line:
Unfortunately, many useful formulations result in NP-complete problems.Biologically significant biclusters have been validated on the yeast cell-cycle expression dataset using Gene Ontology annotations.Comparative study shows that the proposed approach outperforms several existing biclustering algorithms.
Affiliation: School of Information and Communication Technology, Griffith University, Gold Coast Campus, QLD 4222, Queensland, Australia. k.o.cheng@polyu.edu.hk
ABSTRACT
Show MeSH
Background: The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only 1. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis. Results: We develop a novel and efficient biclustering algorithm which can be regarded as a greedy version of an existing algorithm known as pCluster algorithm. By relaxing the constraint in homogeneity, the proposed algorithm has polynomial-time complexity in the worst case instead of exponential-time complexity as in the pCluster algorithm. Experiments on artificial datasets verify that our algorithm can identify both additive-related and multiplicative-related biclusters in the presence of overlap and noise. Biologically significant biclusters have been validated on the yeast cell-cycle expression dataset using Gene Ontology annotations. Comparative study shows that the proposed approach outperforms several existing biclustering algorithms. We also provide an interactive exploratory tool based on PC plot visualization for determining the parameters of our biclustering algorithm. Conclusion: We have proposed a novel biclustering algorithm which works with PC plots for an interactive exploratory analysis of gene expression data. Experiments show that the biclustering algorithm is efficient and is capable of detecting co-regulated genes. The interactive analysis enables an optimum parameter determination in the biclustering algorithm so as to achieve the best result. In future, we will modify the proposed algorithm for other bicluster models such as the coherent evolution model. Related in: MedlinePlus |
Related In:
Results -
Collection
License getmorefigures.php?uid=PMC2396181&req=5
Mentions: Analyzing the distribution along the column direction in the difference matrix thus helps to identify possible biclusters. In the above example, we have two valid biclusters. Thus, C3 and C5 are merged to form two groups as shown in Figure 4. The analysis can be repeated for each of these two groups to find out whether any other columns can be merged to {C3, C5}, i.e., using either C3 or C5 as a reference, we check whether C1, C2, C4 and C6 can be merged with {C3, C5}. In particular, if C3 is used as a reference, two difference matrices as shown in Figure 5 can be obtained. Note that their difference values can be read directly from the original difference matrix of Figure 3. By examining the first difference matrix in Figure 5, we see that two paired columns, "C1-C3" and "C2-C3", show a single bicluster with a difference value equals to zero. This suggests that columns C1 and C2 can be merged to {C3, C5} for rows R1, R3, R5, R9 and R11. The second difference matrix also has a single cluster with a difference value equal to 1 at paired column "C6-C3". Therefore, C6 can be merged to {C3, C5} for rows R2, R4, R6, R8 and R10. Thus by this repeated bicluster growing process – expanding the column set and refining the row set, we can identify possible biclusters embedded in the dataset. Also, note that the difference matrix needs to be calculated only once. This greatly reduces the computational complexity of our algorithm. |
View Article: PubMed Central - HTML - PubMed
Affiliation: School of Information and Communication Technology, Griffith University, Gold Coast Campus, QLD 4222, Queensland, Australia. k.o.cheng@polyu.edu.hk
Background: The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only 1. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis.
Results: We develop a novel and efficient biclustering algorithm which can be regarded as a greedy version of an existing algorithm known as pCluster algorithm. By relaxing the constraint in homogeneity, the proposed algorithm has polynomial-time complexity in the worst case instead of exponential-time complexity as in the pCluster algorithm. Experiments on artificial datasets verify that our algorithm can identify both additive-related and multiplicative-related biclusters in the presence of overlap and noise. Biologically significant biclusters have been validated on the yeast cell-cycle expression dataset using Gene Ontology annotations. Comparative study shows that the proposed approach outperforms several existing biclustering algorithms. We also provide an interactive exploratory tool based on PC plot visualization for determining the parameters of our biclustering algorithm.
Conclusion: We have proposed a novel biclustering algorithm which works with PC plots for an interactive exploratory analysis of gene expression data. Experiments show that the biclustering algorithm is efficient and is capable of detecting co-regulated genes. The interactive analysis enables an optimum parameter determination in the biclustering algorithm so as to achieve the best result. In future, we will modify the proposed algorithm for other bicluster models such as the coherent evolution model.