Limits...
Cell encapsulation in sub-mm sized gel modules using replica molding.

McGuigan AP, Bruzewicz DA, Glavan A, Butte MJ, Butte M, Whitesides GM - PLoS ONE (2008)

Bottom Line: By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells.Modules were formed from a range of standard biopolymers, including collagen, Matrigel, and agarose, without the complex equipment often used in encapsulation.The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (10(8)-10(9) cells/cm(3)).

View Article: PubMed Central - PubMed

Affiliation: Harvard University, Cambridge, Massachusetts, United States of America.

ABSTRACT
For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method--one that is similarly convenient, flexible, and reproducible--exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules) in a variety of simple shapes (cylinders, crosses, rectangular prisms) with lateral dimensions between 40 and 1000 microm, cell densities of 10(5)-10(8) cells/cm(3), and total volumes between 1x10(-7) and 8x10(-4) cm(3). By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (10(8)-10(9) cells/cm(3)). This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i) understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii) developing applications in tissue engineering.

Show MeSH

Related in: MedlinePlus

HepG2 cells and primary cardiomyocytes cultured in collagen modules.A. Confocal microscopy image of HepG2 cells in a 1-mm wide collagen module, cultured for 17 hours. DAPI (blue) indicates cell nuclei, and phalloidin (red) indicates actin. B. Light microscopy image of rat cardiomyocytes encapsulated in a 500-μm wide collagen module, cultured for 24 hours.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2376064&req=5

pone-0002258-g004: HepG2 cells and primary cardiomyocytes cultured in collagen modules.A. Confocal microscopy image of HepG2 cells in a 1-mm wide collagen module, cultured for 17 hours. DAPI (blue) indicates cell nuclei, and phalloidin (red) indicates actin. B. Light microscopy image of rat cardiomyocytes encapsulated in a 500-μm wide collagen module, cultured for 24 hours.

Mentions: To demonstrate the versatility of our method, we fabricated modules from three different polymers (collagen, Matrigel™, and agarose) and in a variety of simple shapes (circles, squares, crosses, and circular crosses). Figure 2 contains light-micrographs of modules made from different gels with differently shaped cross-sections. To show the generality of our method, we encapsulated three different cell types: 3T3 fibroblasts (mouse), HepG2 cells (human, Fig. 4A), and primary rat cardiomyocytes (Fig. 4B). We focused mainly on 3T3 cells because they contract the collagen gel as they proliferate (unlike some other cell lines such as HepG2), and because there is extensive literature on fibroblasts in collagen gels [28]–[31].


Cell encapsulation in sub-mm sized gel modules using replica molding.

McGuigan AP, Bruzewicz DA, Glavan A, Butte MJ, Butte M, Whitesides GM - PLoS ONE (2008)

HepG2 cells and primary cardiomyocytes cultured in collagen modules.A. Confocal microscopy image of HepG2 cells in a 1-mm wide collagen module, cultured for 17 hours. DAPI (blue) indicates cell nuclei, and phalloidin (red) indicates actin. B. Light microscopy image of rat cardiomyocytes encapsulated in a 500-μm wide collagen module, cultured for 24 hours.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2376064&req=5

pone-0002258-g004: HepG2 cells and primary cardiomyocytes cultured in collagen modules.A. Confocal microscopy image of HepG2 cells in a 1-mm wide collagen module, cultured for 17 hours. DAPI (blue) indicates cell nuclei, and phalloidin (red) indicates actin. B. Light microscopy image of rat cardiomyocytes encapsulated in a 500-μm wide collagen module, cultured for 24 hours.
Mentions: To demonstrate the versatility of our method, we fabricated modules from three different polymers (collagen, Matrigel™, and agarose) and in a variety of simple shapes (circles, squares, crosses, and circular crosses). Figure 2 contains light-micrographs of modules made from different gels with differently shaped cross-sections. To show the generality of our method, we encapsulated three different cell types: 3T3 fibroblasts (mouse), HepG2 cells (human, Fig. 4A), and primary rat cardiomyocytes (Fig. 4B). We focused mainly on 3T3 cells because they contract the collagen gel as they proliferate (unlike some other cell lines such as HepG2), and because there is extensive literature on fibroblasts in collagen gels [28]–[31].

Bottom Line: By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells.Modules were formed from a range of standard biopolymers, including collagen, Matrigel, and agarose, without the complex equipment often used in encapsulation.The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (10(8)-10(9) cells/cm(3)).

View Article: PubMed Central - PubMed

Affiliation: Harvard University, Cambridge, Massachusetts, United States of America.

ABSTRACT
For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method--one that is similarly convenient, flexible, and reproducible--exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules) in a variety of simple shapes (cylinders, crosses, rectangular prisms) with lateral dimensions between 40 and 1000 microm, cell densities of 10(5)-10(8) cells/cm(3), and total volumes between 1x10(-7) and 8x10(-4) cm(3). By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (10(8)-10(9) cells/cm(3)). This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i) understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii) developing applications in tissue engineering.

Show MeSH
Related in: MedlinePlus