Limits...
Increased seroreactivity to glioma-expressed antigen 2 in brain tumor patients under radiation.

Heisel SM, Ketter R, Keller A, Klein V, Pallasch CP, Lenhof HP, Meese E - PLoS ONE (2008)

Bottom Line: We established an ELISA assay to analyze reactivity of 24 glioblastoma patients over a period of several months.As control we used 30 sera from healthy donors as well as 30 sera from lung cancer patients.Antigens that become immunogenic with an increased antibody response as result of radiation can serve as ideal targets for immunotherapy of human tumors.

View Article: PubMed Central - PubMed

Affiliation: Department of Human Genetics, Saarland University Medical School, Homburg/Saar, Germany.

ABSTRACT

Background: Surgery and radiation are the mainstays of therapy for human gliomas that are the most common primary brain tumors. Most recently, cell culture and animal studies provided the first convincing evidence that radiation not only eliminates tumor cells, but also modulates the immune response and likely improves anti-tumor immunotherapy.

Methodology/principal findings: We present an in vivo study that analyzes the effects of radiation on the immune response in tumor patients. As readout system, we utilized the reactivity of glioma patients' sera against antigen GLEA2 as the most frequent antigen immunogenic in glioblastoma patients. We established an ELISA assay to analyze reactivity of 24 glioblastoma patients over a period of several months. As control we used 30 sera from healthy donors as well as 30 sera from lung cancer patients. We compared the course of GLEA2 seroreactivity at different times prior, during and after radiation. The GLEA2 seroreactivity was increased by the time of surgery, decreased after surgery, increased again under radiation, and slightly decreased after radiation.

Conclusions/significance: Our results provide in vivo evidence for an increased antibody response against tumor antigens under radiation. Antigens that become immunogenic with an increased antibody response as result of radiation can serve as ideal targets for immunotherapy of human tumors.

Show MeSH

Related in: MedlinePlus

GLEA2 seroreactivity.(A) Comparison of GLEA2 seroreactivity between glioblastoma patients, healthy volunteers, and lung cancer patients as control groups. The differences between the controls and the glioblastoma patients group were statistically significant. The difference between the two control groups was not significant. (B) Comparison of GLEA2 seroreactivity between glioblastoma patients prior to surgery, after surgery, prior to radiation, during radiation and after radiation. The differences were significant between pre-radiation and during radiation. Black bars correspond to median values, the dazed lines to the 75% quantiles, circles represent outliers.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2366063&req=5

pone-0002164-g001: GLEA2 seroreactivity.(A) Comparison of GLEA2 seroreactivity between glioblastoma patients, healthy volunteers, and lung cancer patients as control groups. The differences between the controls and the glioblastoma patients group were statistically significant. The difference between the two control groups was not significant. (B) Comparison of GLEA2 seroreactivity between glioblastoma patients prior to surgery, after surgery, prior to radiation, during radiation and after radiation. The differences were significant between pre-radiation and during radiation. Black bars correspond to median values, the dazed lines to the 75% quantiles, circles represent outliers.

Mentions: The difference of GLEA2 values between the controls and the glioblastoma patients was statistically significant as shown by unpaired two-tailed Wilcoxon Mann-Whitney test (glioblastoma vs. normal p-value 0.017; glioblastoma vs. lung p-value 0.0021). In contrast the difference between lung cancer patients and healthy volunteers was statistically not significant (p-value 0.92). The Box-Whisker-Plot in Figure 1A provides the median and interquantile range of the ELISA data for normal sera, lung cancer sera and the glioblastoma sera that were obtained before surgery.


Increased seroreactivity to glioma-expressed antigen 2 in brain tumor patients under radiation.

Heisel SM, Ketter R, Keller A, Klein V, Pallasch CP, Lenhof HP, Meese E - PLoS ONE (2008)

GLEA2 seroreactivity.(A) Comparison of GLEA2 seroreactivity between glioblastoma patients, healthy volunteers, and lung cancer patients as control groups. The differences between the controls and the glioblastoma patients group were statistically significant. The difference between the two control groups was not significant. (B) Comparison of GLEA2 seroreactivity between glioblastoma patients prior to surgery, after surgery, prior to radiation, during radiation and after radiation. The differences were significant between pre-radiation and during radiation. Black bars correspond to median values, the dazed lines to the 75% quantiles, circles represent outliers.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2366063&req=5

pone-0002164-g001: GLEA2 seroreactivity.(A) Comparison of GLEA2 seroreactivity between glioblastoma patients, healthy volunteers, and lung cancer patients as control groups. The differences between the controls and the glioblastoma patients group were statistically significant. The difference between the two control groups was not significant. (B) Comparison of GLEA2 seroreactivity between glioblastoma patients prior to surgery, after surgery, prior to radiation, during radiation and after radiation. The differences were significant between pre-radiation and during radiation. Black bars correspond to median values, the dazed lines to the 75% quantiles, circles represent outliers.
Mentions: The difference of GLEA2 values between the controls and the glioblastoma patients was statistically significant as shown by unpaired two-tailed Wilcoxon Mann-Whitney test (glioblastoma vs. normal p-value 0.017; glioblastoma vs. lung p-value 0.0021). In contrast the difference between lung cancer patients and healthy volunteers was statistically not significant (p-value 0.92). The Box-Whisker-Plot in Figure 1A provides the median and interquantile range of the ELISA data for normal sera, lung cancer sera and the glioblastoma sera that were obtained before surgery.

Bottom Line: We established an ELISA assay to analyze reactivity of 24 glioblastoma patients over a period of several months.As control we used 30 sera from healthy donors as well as 30 sera from lung cancer patients.Antigens that become immunogenic with an increased antibody response as result of radiation can serve as ideal targets for immunotherapy of human tumors.

View Article: PubMed Central - PubMed

Affiliation: Department of Human Genetics, Saarland University Medical School, Homburg/Saar, Germany.

ABSTRACT

Background: Surgery and radiation are the mainstays of therapy for human gliomas that are the most common primary brain tumors. Most recently, cell culture and animal studies provided the first convincing evidence that radiation not only eliminates tumor cells, but also modulates the immune response and likely improves anti-tumor immunotherapy.

Methodology/principal findings: We present an in vivo study that analyzes the effects of radiation on the immune response in tumor patients. As readout system, we utilized the reactivity of glioma patients' sera against antigen GLEA2 as the most frequent antigen immunogenic in glioblastoma patients. We established an ELISA assay to analyze reactivity of 24 glioblastoma patients over a period of several months. As control we used 30 sera from healthy donors as well as 30 sera from lung cancer patients. We compared the course of GLEA2 seroreactivity at different times prior, during and after radiation. The GLEA2 seroreactivity was increased by the time of surgery, decreased after surgery, increased again under radiation, and slightly decreased after radiation.

Conclusions/significance: Our results provide in vivo evidence for an increased antibody response against tumor antigens under radiation. Antigens that become immunogenic with an increased antibody response as result of radiation can serve as ideal targets for immunotherapy of human tumors.

Show MeSH
Related in: MedlinePlus