Limits...
Chemical and physical properties of some saline lakes in Alberta and Saskatchewan.

Bowman JS, Sachs JP - Saline Syst. (2008)

Bottom Line: Many of these lakes are ecologically and economically significant to the Great Plains Region.The wide range of salinities found across a small geographic area makes the Canadian saline lakes region ideal for testing salinity proxies.This acceleration has ecological implications for the migratory bird species found within the Redberry Important Bird Area.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Oceanography, University of Washington, Seattle 98195-5351, USA. bowmanjs@u.washington.edu

ABSTRACT

Background: The Northern Great Plains of Canada are home to numerous permanent and ephemeral athalassohaline lakes. These lakes display a wide range of ion compositions, salinities, stratification patterns, and ecosystems. Many of these lakes are ecologically and economically significant to the Great Plains Region. A survey of the physical characteristics and chemistry of 19 lakes was carried out to assess their suitability for testing new tools for determining past salinity from the sediment record.

Results: Data on total dissolved solids (TDS), specific conductivity, temperature, dissolved oxygen (DO), and pH were measured in June, 2007. A comparison of these data with past measurements indicates that salinity is declining at Little Manitou and Big Quill Lakes in the province of Saskatchewan. However salinity is rising at other lakes in the region, including Redberry and Manito Lakes.

Conclusion: The wide range of salinities found across a small geographic area makes the Canadian saline lakes region ideal for testing salinity proxies. A nonlinear increase in salinity at Redberry Lake is likely influenced by its morphometry. This acceleration has ecological implications for the migratory bird species found within the Redberry Important Bird Area.

No MeSH data available.


Little Manitou West. Depth profile for Little Manitou West with temperature (°C), specific conductivity (mS cm-1 at 25°C), and DO (mg L-1). The strong chemocline between 3.5 m and 4 m can be clearly seen.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2365950&req=5

Figure 6: Little Manitou West. Depth profile for Little Manitou West with temperature (°C), specific conductivity (mS cm-1 at 25°C), and DO (mg L-1). The strong chemocline between 3.5 m and 4 m can be clearly seen.

Mentions: The Little Manitou system is comprised of two lakes southeast of Saskatoon. The two lakes are separated by a semi-permeable causeway formed by Provincial Highway 365. Stratified and eusaline (within the mixolimnion), Little Manitou West is considerably larger and deeper then Little Manitou East. Measurements were made to a depth of 4.3 m at the location given in Table 1, maximum lake depth is reported as 5.2 m [4]. Water chemistry data is presented in Table 2 and depth profiles of temperature, specific conductivity and DO are shown in Fig. 6. A strong chemocline was observed between 3.5–4 m in which DO dropped from 5.5 to .3 mg L-1 while salinity and specific conductivity increased from 57.82 to 63.12 mS cm-1 at 25°C. A weak thermocline was observed below 2.5 m. Sediment recovered from a depth of 4.3 m consisted of mostly algal material. It was not possible to determine at what depth this algal material originated, however given the anoxic bottom water it was unlikely to have come from below 3.5 m.


Chemical and physical properties of some saline lakes in Alberta and Saskatchewan.

Bowman JS, Sachs JP - Saline Syst. (2008)

Little Manitou West. Depth profile for Little Manitou West with temperature (°C), specific conductivity (mS cm-1 at 25°C), and DO (mg L-1). The strong chemocline between 3.5 m and 4 m can be clearly seen.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2365950&req=5

Figure 6: Little Manitou West. Depth profile for Little Manitou West with temperature (°C), specific conductivity (mS cm-1 at 25°C), and DO (mg L-1). The strong chemocline between 3.5 m and 4 m can be clearly seen.
Mentions: The Little Manitou system is comprised of two lakes southeast of Saskatoon. The two lakes are separated by a semi-permeable causeway formed by Provincial Highway 365. Stratified and eusaline (within the mixolimnion), Little Manitou West is considerably larger and deeper then Little Manitou East. Measurements were made to a depth of 4.3 m at the location given in Table 1, maximum lake depth is reported as 5.2 m [4]. Water chemistry data is presented in Table 2 and depth profiles of temperature, specific conductivity and DO are shown in Fig. 6. A strong chemocline was observed between 3.5–4 m in which DO dropped from 5.5 to .3 mg L-1 while salinity and specific conductivity increased from 57.82 to 63.12 mS cm-1 at 25°C. A weak thermocline was observed below 2.5 m. Sediment recovered from a depth of 4.3 m consisted of mostly algal material. It was not possible to determine at what depth this algal material originated, however given the anoxic bottom water it was unlikely to have come from below 3.5 m.

Bottom Line: Many of these lakes are ecologically and economically significant to the Great Plains Region.The wide range of salinities found across a small geographic area makes the Canadian saline lakes region ideal for testing salinity proxies.This acceleration has ecological implications for the migratory bird species found within the Redberry Important Bird Area.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Oceanography, University of Washington, Seattle 98195-5351, USA. bowmanjs@u.washington.edu

ABSTRACT

Background: The Northern Great Plains of Canada are home to numerous permanent and ephemeral athalassohaline lakes. These lakes display a wide range of ion compositions, salinities, stratification patterns, and ecosystems. Many of these lakes are ecologically and economically significant to the Great Plains Region. A survey of the physical characteristics and chemistry of 19 lakes was carried out to assess their suitability for testing new tools for determining past salinity from the sediment record.

Results: Data on total dissolved solids (TDS), specific conductivity, temperature, dissolved oxygen (DO), and pH were measured in June, 2007. A comparison of these data with past measurements indicates that salinity is declining at Little Manitou and Big Quill Lakes in the province of Saskatchewan. However salinity is rising at other lakes in the region, including Redberry and Manito Lakes.

Conclusion: The wide range of salinities found across a small geographic area makes the Canadian saline lakes region ideal for testing salinity proxies. A nonlinear increase in salinity at Redberry Lake is likely influenced by its morphometry. This acceleration has ecological implications for the migratory bird species found within the Redberry Important Bird Area.

No MeSH data available.