Limits...
Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells.

Tondreau T, Dejeneffe M, Meuleman N, Stamatopoulos B, Delforge A, Martiat P, Bron D, Lagneaux L - BMC Genomics (2008)

Bottom Line: Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation.Our results demonstrate that BM-MSC have the potential to differentiate in neuronal cells with specific gene expression and functional properties.BM-MSC are thus promising candidates for cell-based therapy of neurodegenerative diseases.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institut Jules Bordet, Université Libre de Bruxelles, Laboratory of Experimental Hematology, 121, Bd de Waterloo, 1000 Brussels, Belgium. Tatiana.tondreau@bordet.be

ABSTRACT

Background: Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC) could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes.

Methods: BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin). By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3.

Results: Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin). Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin). Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3), NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate receptor channel (AMPA3) in the presence of two agonist glutamate, AMPA or CNQX antagonist.

Conclusion: Our results demonstrate that BM-MSC have the potential to differentiate in neuronal cells with specific gene expression and functional properties. BM-MSC are thus promising candidates for cell-based therapy of neurodegenerative diseases.

Show MeSH

Related in: MedlinePlus

Quantitative real-time PCR analysis. Quantitative real-time PCR analysis using β-actin as a housekeeping gene and calibrated with the PANOMICS: Human brain total RNA (invitrogen, Brussels, Belgium). Results are expressed in fold change signal between differentiated and non-differentiated BM-MSC after the neurogenic induction. Selected neuronal genes were NEGR1, EphA4, NEF3, GRIA3 (AMPA), PENK (Grey column). Selected mesenchymal genes were HAPLN1, VIM, CSPG4, CALD1, DSC96, MEST, TUFT1 (black column).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2358905&req=5

Figure 4: Quantitative real-time PCR analysis. Quantitative real-time PCR analysis using β-actin as a housekeeping gene and calibrated with the PANOMICS: Human brain total RNA (invitrogen, Brussels, Belgium). Results are expressed in fold change signal between differentiated and non-differentiated BM-MSC after the neurogenic induction. Selected neuronal genes were NEGR1, EphA4, NEF3, GRIA3 (AMPA), PENK (Grey column). Selected mesenchymal genes were HAPLN1, VIM, CSPG4, CALD1, DSC96, MEST, TUFT1 (black column).

Mentions: To confirm the gene expression profile revealed by microarray analysis, quantitative RT-PCR was carried out. Representative genes involved into neural development/differentiation (EphA4, AMPA3, NEGR1, NEF3, PENK) and in mesodermal cell lineage (HAPLN1, CSPG4, CALD1, VIM, DSC96, MEST, TUFT1) were selected from our microarray analysis. We evaluated the mRNA gene expression between undifferentiated/differentiated cells in comparison with a housekeeping gene (β-actin). As show in figure 4, using quantitative real-time PCR, we confirmed the increased expression of EphA4, AMPA3, NEGR1, NEF3 and PENK by differentiated MSC ten days after neurogenic induction. In contrast, genes expressed naturally by BM-MSC were downregulated after neurogenic induction (HAPLN1, CSPG4, CALD1, VIM, DSC96, MEST, TUFT1).


Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells.

Tondreau T, Dejeneffe M, Meuleman N, Stamatopoulos B, Delforge A, Martiat P, Bron D, Lagneaux L - BMC Genomics (2008)

Quantitative real-time PCR analysis. Quantitative real-time PCR analysis using β-actin as a housekeeping gene and calibrated with the PANOMICS: Human brain total RNA (invitrogen, Brussels, Belgium). Results are expressed in fold change signal between differentiated and non-differentiated BM-MSC after the neurogenic induction. Selected neuronal genes were NEGR1, EphA4, NEF3, GRIA3 (AMPA), PENK (Grey column). Selected mesenchymal genes were HAPLN1, VIM, CSPG4, CALD1, DSC96, MEST, TUFT1 (black column).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2358905&req=5

Figure 4: Quantitative real-time PCR analysis. Quantitative real-time PCR analysis using β-actin as a housekeeping gene and calibrated with the PANOMICS: Human brain total RNA (invitrogen, Brussels, Belgium). Results are expressed in fold change signal between differentiated and non-differentiated BM-MSC after the neurogenic induction. Selected neuronal genes were NEGR1, EphA4, NEF3, GRIA3 (AMPA), PENK (Grey column). Selected mesenchymal genes were HAPLN1, VIM, CSPG4, CALD1, DSC96, MEST, TUFT1 (black column).
Mentions: To confirm the gene expression profile revealed by microarray analysis, quantitative RT-PCR was carried out. Representative genes involved into neural development/differentiation (EphA4, AMPA3, NEGR1, NEF3, PENK) and in mesodermal cell lineage (HAPLN1, CSPG4, CALD1, VIM, DSC96, MEST, TUFT1) were selected from our microarray analysis. We evaluated the mRNA gene expression between undifferentiated/differentiated cells in comparison with a housekeeping gene (β-actin). As show in figure 4, using quantitative real-time PCR, we confirmed the increased expression of EphA4, AMPA3, NEGR1, NEF3 and PENK by differentiated MSC ten days after neurogenic induction. In contrast, genes expressed naturally by BM-MSC were downregulated after neurogenic induction (HAPLN1, CSPG4, CALD1, VIM, DSC96, MEST, TUFT1).

Bottom Line: Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation.Our results demonstrate that BM-MSC have the potential to differentiate in neuronal cells with specific gene expression and functional properties.BM-MSC are thus promising candidates for cell-based therapy of neurodegenerative diseases.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institut Jules Bordet, Université Libre de Bruxelles, Laboratory of Experimental Hematology, 121, Bd de Waterloo, 1000 Brussels, Belgium. Tatiana.tondreau@bordet.be

ABSTRACT

Background: Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC) could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes.

Methods: BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin). By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3.

Results: Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin). Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin). Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3), NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate receptor channel (AMPA3) in the presence of two agonist glutamate, AMPA or CNQX antagonist.

Conclusion: Our results demonstrate that BM-MSC have the potential to differentiate in neuronal cells with specific gene expression and functional properties. BM-MSC are thus promising candidates for cell-based therapy of neurodegenerative diseases.

Show MeSH
Related in: MedlinePlus