Limits...
Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical cancer cells.

Jankowska A, Gunderson SI, Andrusiewicz M, Burczynska B, Szczerba A, Jarmolowski A, Nowak-Markwitz E, Warchol JB - Mol. Cancer (2008)

Bottom Line: This study documents the molecular presence of human chorionic gonadotropin beta subunit in uterine cervix cancer tissues and investigates a novel technique to reduce hCGbeta levels based on expression of a modified U1 snRNA as a method to study the hormone's role in biology of human cervical cancer cells cultured in vitro.Reduction of hCGbeta levels resulted in a significantly increased apoptosis rate with almost 90% of cells transfected with modified anti-hCGbeta U1 snRNAs showing morphological changes characteristic of the apoptotic process.These data suggest that human chorionic gonadotropin beta subunit may act as a tumor growth-stimulating factor.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Cell Biology, University of Medical Sciences, Rokietnicka 5D, Poznan, Poland. ajanko@amp.edu.pl

ABSTRACT

Background: Secretion of human chorionic gonadotropin, especially its beta subunit by malignant trophoblastic tumors and varieties of tumors of different origin is now well documented; however the role of hCG in tumorogenesis is still unknown.

Results: This study documents the molecular presence of human chorionic gonadotropin beta subunit in uterine cervix cancer tissues and investigates a novel technique to reduce hCGbeta levels based on expression of a modified U1 snRNA as a method to study the hormone's role in biology of human cervical cancer cells cultured in vitro. The property of U1 snRNA to block the accumulation of specific RNA transcript when it binds to its donor sequence within the 3' terminal exon was used. The first 10 nucleotides of the human U1 snRNA gene, which normally binds to the 5'ss in pre-mRNA were replaced by a sequence complementary to a 10-nt segment in the terminal exon of the hCGbeta mRNA. Three different 5' end-mutated U1 snRNA expression plasmids were tested, each targeting a different sequence in the hCGbeta mRNA, and we found each one blocked the expression of hCGbeta in HeLa cells, a cervix carcinoma cell line, as shown by immunohistochemistry and qRT-PCR. Reduction of hCGbeta levels resulted in a significantly increased apoptosis rate with almost 90% of cells transfected with modified anti-hCGbeta U1 snRNAs showing morphological changes characteristic of the apoptotic process.

Conclusion: These data suggest that human chorionic gonadotropin beta subunit may act as a tumor growth-stimulating factor.

Show MeSH

Related in: MedlinePlus

Immunolocalisation of hCG in cervical carcinoma. Immunohistochemistry was performed using specific antibodies against hCG on paraffin section of tumor tissue. Hormone staining was localized predominantly in the neoplastically transformed epithelial cells as indicated by the arrows. Positive immunostaining was also detected in single cells in stroma – arrowheads. Original magnification, ×400.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2335103&req=5

Figure 2: Immunolocalisation of hCG in cervical carcinoma. Immunohistochemistry was performed using specific antibodies against hCG on paraffin section of tumor tissue. Hormone staining was localized predominantly in the neoplastically transformed epithelial cells as indicated by the arrows. Positive immunostaining was also detected in single cells in stroma – arrowheads. Original magnification, ×400.

Mentions: To verify the presence of hCG on the protein level and to address localisation of the hormone in cancer tissue, immunohistochemical analyses were carried out with primary antibodies against hCG. Hormone staining was localized predominantly in the neoplastically transformed tumor epithelial cells, characterised by uniform and homogenous cytoplasmic staining, however a single positive cells in stroma were detected (Figure 2).


Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical cancer cells.

Jankowska A, Gunderson SI, Andrusiewicz M, Burczynska B, Szczerba A, Jarmolowski A, Nowak-Markwitz E, Warchol JB - Mol. Cancer (2008)

Immunolocalisation of hCG in cervical carcinoma. Immunohistochemistry was performed using specific antibodies against hCG on paraffin section of tumor tissue. Hormone staining was localized predominantly in the neoplastically transformed epithelial cells as indicated by the arrows. Positive immunostaining was also detected in single cells in stroma – arrowheads. Original magnification, ×400.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2335103&req=5

Figure 2: Immunolocalisation of hCG in cervical carcinoma. Immunohistochemistry was performed using specific antibodies against hCG on paraffin section of tumor tissue. Hormone staining was localized predominantly in the neoplastically transformed epithelial cells as indicated by the arrows. Positive immunostaining was also detected in single cells in stroma – arrowheads. Original magnification, ×400.
Mentions: To verify the presence of hCG on the protein level and to address localisation of the hormone in cancer tissue, immunohistochemical analyses were carried out with primary antibodies against hCG. Hormone staining was localized predominantly in the neoplastically transformed tumor epithelial cells, characterised by uniform and homogenous cytoplasmic staining, however a single positive cells in stroma were detected (Figure 2).

Bottom Line: This study documents the molecular presence of human chorionic gonadotropin beta subunit in uterine cervix cancer tissues and investigates a novel technique to reduce hCGbeta levels based on expression of a modified U1 snRNA as a method to study the hormone's role in biology of human cervical cancer cells cultured in vitro.Reduction of hCGbeta levels resulted in a significantly increased apoptosis rate with almost 90% of cells transfected with modified anti-hCGbeta U1 snRNAs showing morphological changes characteristic of the apoptotic process.These data suggest that human chorionic gonadotropin beta subunit may act as a tumor growth-stimulating factor.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Cell Biology, University of Medical Sciences, Rokietnicka 5D, Poznan, Poland. ajanko@amp.edu.pl

ABSTRACT

Background: Secretion of human chorionic gonadotropin, especially its beta subunit by malignant trophoblastic tumors and varieties of tumors of different origin is now well documented; however the role of hCG in tumorogenesis is still unknown.

Results: This study documents the molecular presence of human chorionic gonadotropin beta subunit in uterine cervix cancer tissues and investigates a novel technique to reduce hCGbeta levels based on expression of a modified U1 snRNA as a method to study the hormone's role in biology of human cervical cancer cells cultured in vitro. The property of U1 snRNA to block the accumulation of specific RNA transcript when it binds to its donor sequence within the 3' terminal exon was used. The first 10 nucleotides of the human U1 snRNA gene, which normally binds to the 5'ss in pre-mRNA were replaced by a sequence complementary to a 10-nt segment in the terminal exon of the hCGbeta mRNA. Three different 5' end-mutated U1 snRNA expression plasmids were tested, each targeting a different sequence in the hCGbeta mRNA, and we found each one blocked the expression of hCGbeta in HeLa cells, a cervix carcinoma cell line, as shown by immunohistochemistry and qRT-PCR. Reduction of hCGbeta levels resulted in a significantly increased apoptosis rate with almost 90% of cells transfected with modified anti-hCGbeta U1 snRNAs showing morphological changes characteristic of the apoptotic process.

Conclusion: These data suggest that human chorionic gonadotropin beta subunit may act as a tumor growth-stimulating factor.

Show MeSH
Related in: MedlinePlus