Limits...
Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei.

Ungar PS, Grine FE, Teaford MF - PLoS ONE (2008)

Bottom Line: High microwear surface texture complexity and anisotropy in extant primates can be associated with the consumption of exceptionally hard and tough foods respectively.This suggests that none of the individuals consumed especially hard or tough foods in the days before they died.The apparent discrepancy between microwear and functional anatomy is consistent with the idea that P. boisei presents a hominin example of Liem's Paradox, wherein a highly derived morphology need not reflect a specialized diet.

View Article: PubMed Central - PubMed

Affiliation: Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, United States of America. pungar@uark.edu

ABSTRACT
The Plio-Pleistocene hominin Paranthropus boisei had enormous, flat, thickly enameled cheek teeth, a robust cranium and mandible, and inferred massive, powerful chewing muscles. This specialized morphology, which earned P. boisei the nickname "Nutcracker Man", suggests that this hominin could have consumed very mechanically challenging foods. It has been recently argued, however, that specialized hominin morphology may indicate adaptations for the consumption of occasional fallback foods rather than preferred resources. Dental microwear offers a potential means by which to test this hypothesis in that it reflects actual use rather than genetic adaptation. High microwear surface texture complexity and anisotropy in extant primates can be associated with the consumption of exceptionally hard and tough foods respectively. Here we present the first quantitative analysis of dental microwear for P. boisei. Seven specimens examined preserved unobscured antemortem molar microwear. These all show relatively low complexity and anisotropy values. This suggests that none of the individuals consumed especially hard or tough foods in the days before they died. The apparent discrepancy between microwear and functional anatomy is consistent with the idea that P. boisei presents a hominin example of Liem's Paradox, wherein a highly derived morphology need not reflect a specialized diet.

Show MeSH
Photosimulation montages of all Paranthropus boisei specimens known to preserve antemortem microwear.Each montage is comprised of photosimulations of 3D point clouds for four adjacent fields representing a total of 276×204 µm of each original occlusal surface. (A) KNM-CH 1, (B) KNM-ER 729, (C) KNM-ER 3230, (D) KNM-ER 3952, (E) KNM-WT 17400, (F) OH 5, (G) Omo L7A-125.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2315797&req=5

pone-0002044-g001: Photosimulation montages of all Paranthropus boisei specimens known to preserve antemortem microwear.Each montage is comprised of photosimulations of 3D point clouds for four adjacent fields representing a total of 276×204 µm of each original occlusal surface. (A) KNM-CH 1, (B) KNM-ER 729, (C) KNM-ER 3230, (D) KNM-ER 3952, (E) KNM-WT 17400, (F) OH 5, (G) Omo L7A-125.

Mentions: All Paranthropus boisei specimens had light microwear, with most showing wear surfaces dominated by fine striations (Fig 1). None had the large, deep pits expected of a hard-object specialist or the uniformly large, deep and parallel striations observed for tough food grazing mammals. Fractal complexity values were uniformly low with minimal variation, and anisotropy values were moderate, both in range and central tendency.


Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei.

Ungar PS, Grine FE, Teaford MF - PLoS ONE (2008)

Photosimulation montages of all Paranthropus boisei specimens known to preserve antemortem microwear.Each montage is comprised of photosimulations of 3D point clouds for four adjacent fields representing a total of 276×204 µm of each original occlusal surface. (A) KNM-CH 1, (B) KNM-ER 729, (C) KNM-ER 3230, (D) KNM-ER 3952, (E) KNM-WT 17400, (F) OH 5, (G) Omo L7A-125.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2315797&req=5

pone-0002044-g001: Photosimulation montages of all Paranthropus boisei specimens known to preserve antemortem microwear.Each montage is comprised of photosimulations of 3D point clouds for four adjacent fields representing a total of 276×204 µm of each original occlusal surface. (A) KNM-CH 1, (B) KNM-ER 729, (C) KNM-ER 3230, (D) KNM-ER 3952, (E) KNM-WT 17400, (F) OH 5, (G) Omo L7A-125.
Mentions: All Paranthropus boisei specimens had light microwear, with most showing wear surfaces dominated by fine striations (Fig 1). None had the large, deep pits expected of a hard-object specialist or the uniformly large, deep and parallel striations observed for tough food grazing mammals. Fractal complexity values were uniformly low with minimal variation, and anisotropy values were moderate, both in range and central tendency.

Bottom Line: High microwear surface texture complexity and anisotropy in extant primates can be associated with the consumption of exceptionally hard and tough foods respectively.This suggests that none of the individuals consumed especially hard or tough foods in the days before they died.The apparent discrepancy between microwear and functional anatomy is consistent with the idea that P. boisei presents a hominin example of Liem's Paradox, wherein a highly derived morphology need not reflect a specialized diet.

View Article: PubMed Central - PubMed

Affiliation: Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, United States of America. pungar@uark.edu

ABSTRACT
The Plio-Pleistocene hominin Paranthropus boisei had enormous, flat, thickly enameled cheek teeth, a robust cranium and mandible, and inferred massive, powerful chewing muscles. This specialized morphology, which earned P. boisei the nickname "Nutcracker Man", suggests that this hominin could have consumed very mechanically challenging foods. It has been recently argued, however, that specialized hominin morphology may indicate adaptations for the consumption of occasional fallback foods rather than preferred resources. Dental microwear offers a potential means by which to test this hypothesis in that it reflects actual use rather than genetic adaptation. High microwear surface texture complexity and anisotropy in extant primates can be associated with the consumption of exceptionally hard and tough foods respectively. Here we present the first quantitative analysis of dental microwear for P. boisei. Seven specimens examined preserved unobscured antemortem molar microwear. These all show relatively low complexity and anisotropy values. This suggests that none of the individuals consumed especially hard or tough foods in the days before they died. The apparent discrepancy between microwear and functional anatomy is consistent with the idea that P. boisei presents a hominin example of Liem's Paradox, wherein a highly derived morphology need not reflect a specialized diet.

Show MeSH