Limits...
On the epidemiology of influenza.

Cannell JJ, Zasloff M, Garland CF, Scragg R, Giovannucci E - Virol. J. (2008)

Bottom Line: (8) Why does experimental inoculation of seronegative humans fail to cause illness in all the volunteers?We review recent discoveries about vitamin D's effects on innate immunity, human studies attempting sick-to-well transmission, naturalistic reports of human transmission, studies of serial interval, secondary attack rates, and relevant animal studies.We hypothesize that two factors explain the nine conundrums: vitamin D's seasonal and population effects on innate immunity, and the presence of a subpopulation of "good infectors." If true, our revision of Edgar Hope-Simpson's theory has profound implications for the prevention of influenza.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Psychiatry, Atascadero State Hospital, 10333 El Camino Real, Atascadero, CA 93423, USA. jcannell@ash.dmh.ca.gov

ABSTRACT
The epidemiology of influenza swarms with incongruities, incongruities exhaustively detailed by the late British epidemiologist, Edgar Hope-Simpson. He was the first to propose a parsimonious theory explaining why influenza is, as Gregg said, "seemingly unmindful of traditional infectious disease behavioral patterns." Recent discoveries indicate vitamin D upregulates the endogenous antibiotics of innate immunity and suggest that the incongruities explored by Hope-Simpson may be secondary to the epidemiology of vitamin D deficiency. We identify - and attempt to explain - nine influenza conundrums: (1) Why is influenza both seasonal and ubiquitous and where is the virus between epidemics? (2) Why are the epidemics so explosive? (3) Why do they end so abruptly? (4) What explains the frequent coincidental timing of epidemics in countries of similar latitude? (5) Why is the serial interval obscure? (6) Why is the secondary attack rate so low? (7) Why did epidemics in previous ages spread so rapidly, despite the lack of modern transport? (8) Why does experimental inoculation of seronegative humans fail to cause illness in all the volunteers? (9) Why has influenza mortality of the aged not declined as their vaccination rates increased? We review recent discoveries about vitamin D's effects on innate immunity, human studies attempting sick-to-well transmission, naturalistic reports of human transmission, studies of serial interval, secondary attack rates, and relevant animal studies. We hypothesize that two factors explain the nine conundrums: vitamin D's seasonal and population effects on innate immunity, and the presence of a subpopulation of "good infectors." If true, our revision of Edgar Hope-Simpson's theory has profound implications for the prevention of influenza.

Show MeSH

Related in: MedlinePlus

Incidence of reported cold/influenza symptoms according to season. The 104 subjects in the placebo group (light shade) reported cold and flu symptoms year around with the most symptoms in the winter. While on 800 IU per day (intermediate shade) the 104 test subjects were as likely to get sick in the summer as the winter. Only one of the 104 test subjects had cold/influenza symptoms during the final year of the trial, when they took 2,000 IU of vitamin D per day (dark shading). Adapted from: Aloia JF, Li-Ng M: Epidemic influenza and vitamin D. Epidemiol Infect 2007; 135: 1095–1096. (Reproduced with permission, Cambridge University Press).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2279112&req=5

Figure 2: Incidence of reported cold/influenza symptoms according to season. The 104 subjects in the placebo group (light shade) reported cold and flu symptoms year around with the most symptoms in the winter. While on 800 IU per day (intermediate shade) the 104 test subjects were as likely to get sick in the summer as the winter. Only one of the 104 test subjects had cold/influenza symptoms during the final year of the trial, when they took 2,000 IU of vitamin D per day (dark shading). Adapted from: Aloia JF, Li-Ng M: Epidemic influenza and vitamin D. Epidemiol Infect 2007; 135: 1095–1096. (Reproduced with permission, Cambridge University Press).

Mentions: In fact, Aloia and Li-Ng presented evidence of a dramatic vitamin D preventative effect from a randomized controlled trial (RCT) [25]. In a post-hoc analysis of the side effect questions of their original three-year RCT, they discovered 104 post-menopausal African American women given vitamin D were three times less likely to report cold and flu symptoms than 104 placebo controls. A low dose (800 IU/day) not only reduced reported incidence, it abolished the seasonality of reported colds and flu. A higher dose (2000 IU/day), given during the last year of their trial, virtually eradicated all reports of colds or flu. (Figure 2) Recent discoveries about vitamin D's mechanism of action in combating infections [26] led Science News to suggest that vitamin D is the "antibiotic vitamin" [27] due primarily to its robust effects on innate immunity.


On the epidemiology of influenza.

Cannell JJ, Zasloff M, Garland CF, Scragg R, Giovannucci E - Virol. J. (2008)

Incidence of reported cold/influenza symptoms according to season. The 104 subjects in the placebo group (light shade) reported cold and flu symptoms year around with the most symptoms in the winter. While on 800 IU per day (intermediate shade) the 104 test subjects were as likely to get sick in the summer as the winter. Only one of the 104 test subjects had cold/influenza symptoms during the final year of the trial, when they took 2,000 IU of vitamin D per day (dark shading). Adapted from: Aloia JF, Li-Ng M: Epidemic influenza and vitamin D. Epidemiol Infect 2007; 135: 1095–1096. (Reproduced with permission, Cambridge University Press).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2279112&req=5

Figure 2: Incidence of reported cold/influenza symptoms according to season. The 104 subjects in the placebo group (light shade) reported cold and flu symptoms year around with the most symptoms in the winter. While on 800 IU per day (intermediate shade) the 104 test subjects were as likely to get sick in the summer as the winter. Only one of the 104 test subjects had cold/influenza symptoms during the final year of the trial, when they took 2,000 IU of vitamin D per day (dark shading). Adapted from: Aloia JF, Li-Ng M: Epidemic influenza and vitamin D. Epidemiol Infect 2007; 135: 1095–1096. (Reproduced with permission, Cambridge University Press).
Mentions: In fact, Aloia and Li-Ng presented evidence of a dramatic vitamin D preventative effect from a randomized controlled trial (RCT) [25]. In a post-hoc analysis of the side effect questions of their original three-year RCT, they discovered 104 post-menopausal African American women given vitamin D were three times less likely to report cold and flu symptoms than 104 placebo controls. A low dose (800 IU/day) not only reduced reported incidence, it abolished the seasonality of reported colds and flu. A higher dose (2000 IU/day), given during the last year of their trial, virtually eradicated all reports of colds or flu. (Figure 2) Recent discoveries about vitamin D's mechanism of action in combating infections [26] led Science News to suggest that vitamin D is the "antibiotic vitamin" [27] due primarily to its robust effects on innate immunity.

Bottom Line: (8) Why does experimental inoculation of seronegative humans fail to cause illness in all the volunteers?We review recent discoveries about vitamin D's effects on innate immunity, human studies attempting sick-to-well transmission, naturalistic reports of human transmission, studies of serial interval, secondary attack rates, and relevant animal studies.We hypothesize that two factors explain the nine conundrums: vitamin D's seasonal and population effects on innate immunity, and the presence of a subpopulation of "good infectors." If true, our revision of Edgar Hope-Simpson's theory has profound implications for the prevention of influenza.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Psychiatry, Atascadero State Hospital, 10333 El Camino Real, Atascadero, CA 93423, USA. jcannell@ash.dmh.ca.gov

ABSTRACT
The epidemiology of influenza swarms with incongruities, incongruities exhaustively detailed by the late British epidemiologist, Edgar Hope-Simpson. He was the first to propose a parsimonious theory explaining why influenza is, as Gregg said, "seemingly unmindful of traditional infectious disease behavioral patterns." Recent discoveries indicate vitamin D upregulates the endogenous antibiotics of innate immunity and suggest that the incongruities explored by Hope-Simpson may be secondary to the epidemiology of vitamin D deficiency. We identify - and attempt to explain - nine influenza conundrums: (1) Why is influenza both seasonal and ubiquitous and where is the virus between epidemics? (2) Why are the epidemics so explosive? (3) Why do they end so abruptly? (4) What explains the frequent coincidental timing of epidemics in countries of similar latitude? (5) Why is the serial interval obscure? (6) Why is the secondary attack rate so low? (7) Why did epidemics in previous ages spread so rapidly, despite the lack of modern transport? (8) Why does experimental inoculation of seronegative humans fail to cause illness in all the volunteers? (9) Why has influenza mortality of the aged not declined as their vaccination rates increased? We review recent discoveries about vitamin D's effects on innate immunity, human studies attempting sick-to-well transmission, naturalistic reports of human transmission, studies of serial interval, secondary attack rates, and relevant animal studies. We hypothesize that two factors explain the nine conundrums: vitamin D's seasonal and population effects on innate immunity, and the presence of a subpopulation of "good infectors." If true, our revision of Edgar Hope-Simpson's theory has profound implications for the prevention of influenza.

Show MeSH
Related in: MedlinePlus