Limits...
Transmission pathways of foot-and-mouth disease virus in the United Kingdom in 2007.

Cottam EM, Wadsworth J, Shaw AE, Rowlands RJ, Goatley L, Maan S, Maan NS, Mertens PP, Ebert K, Li Y, Ryan ED, Juleff N, Ferris NP, Wilesmith JW, Haydon DT, King DP, Paton DJ, Knowles NJ - PLoS Pathog. (2008)

Bottom Line: Foot-and-mouth disease (FMD) virus causes an acute vesicular disease of domesticated and wild ruminants and pigs.Identifying sources of FMD outbreaks is often confounded by incomplete epidemiological evidence and the numerous routes by which virus can spread (movements of infected animals or their products, contaminated persons, objects, and aerosols).Genetic analysis of complete viral genomes generated in real-time reveals a probable chain of transmission events, predicting undisclosed infected premises, and connecting the second cluster of outbreaks in September to those in August.

View Article: PubMed Central - PubMed

Affiliation: Institute for Animal Health, Pirbright Laboratory, Pirbright, Woking, Surrey, United Kingdom.

ABSTRACT
Foot-and-mouth disease (FMD) virus causes an acute vesicular disease of domesticated and wild ruminants and pigs. Identifying sources of FMD outbreaks is often confounded by incomplete epidemiological evidence and the numerous routes by which virus can spread (movements of infected animals or their products, contaminated persons, objects, and aerosols). Here, we show that the outbreaks of FMD in the United Kingdom in August 2007 were caused by a derivative of FMDV O(1) BFS 1860, a virus strain handled at two FMD laboratories located on a single site at Pirbright in Surrey. Genetic analysis of complete viral genomes generated in real-time reveals a probable chain of transmission events, predicting undisclosed infected premises, and connecting the second cluster of outbreaks in September to those in August. Complete genome sequence analysis of FMD viruses conducted in real-time have identified the initial and intermediate sources of these outbreaks and demonstrate the value of such techniques in providing information useful to contemporary disease control programmes.

Show MeSH

Related in: MedlinePlus

The geographical area affected by FMD outbreaks in 2007.The location of premises and holdings are shown (red circles, clinical signs confirmed by laboratory analysis; yellow circles, FMDV detected using laboratory assays in the absence of clinical disease; and ⊗, additional holdings associated with FMD infected premises with no evidence of infection). The shaded areas denote the extent of the 5km protection zones and 10 km surveillance zones established (blue and green representing outbreaks in August and September respectively). The map also shows major towns and motorways in the region and the location of the Pirbright site (star).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2277462&req=5

ppat-1000050-g001: The geographical area affected by FMD outbreaks in 2007.The location of premises and holdings are shown (red circles, clinical signs confirmed by laboratory analysis; yellow circles, FMDV detected using laboratory assays in the absence of clinical disease; and ⊗, additional holdings associated with FMD infected premises with no evidence of infection). The shaded areas denote the extent of the 5km protection zones and 10 km surveillance zones established (blue and green representing outbreaks in August and September respectively). The map also shows major towns and motorways in the region and the location of the Pirbright site (star).

Mentions: The UK 2007 FMD outbreaks have been characterised by the emergence of two temporally and spatially distinct clusters. Eight infected premises (IP1-8: designation of IP numbering is according to The Department for Environment, Food and Rural Affairs [Defra], UK) have been identified (Figure 1 and Table 1), two in August and six in September. The first case (IP1b) was recognised in beef cattle in a field off Westwood Lane, Normandy, Surrey, UK. Samples collected on 3rd August 2007 from animals exhibiting suspect clinical signs were submitted to the World Reference Laboratory for FMD located at the Institute for Animal Health (IAH), Pirbright, Surrey. Within 24 hours, FMDV sequence data obtained from the first IP (holding IP1b) revealed a VP1 gene-identity of 99.84% to FMDV O1 British Field Sample 1860 (O1 BFS 1860); intratypic identities between type O VP1 sequences may be as low as 80% [4]. O1BFS 1860 is a widely used reference and vaccine strain, originally derived from bovine tongue epithelium received at the World Reference Laboratory for FMD at Pirbright in 1967 from a farm near Wrexham, England. The Pirbright site, comprising the laboratories of the IAH and Merial Animal Health Limited (Merial), is situated 4.4 km from the first IP. Both laboratories were working with the O1 BFS 1860 virus strain, making this site a likely source of the outbreak. Three days after the case at IP1b, a second infected premises (IP2b) was identified at Willey Green, approximately 1.5 Km from IP1b. Cattle at a further holding (IP2c) near to and under the same ownership as IP2b were found to be incubating disease at the time of slaughter. Animals on both the affected farms were destroyed and the premises were disinfected. Subsequent clinical and serological surveillance within a 10 km control zone found no evidence of further dissemination of FMD. However, on 12th September 2007, five weeks after the IP1 and IP2 cattle had been culled, FMD was confirmed on the holding of a new IP (IP3b) situated outside the 10 km control zone surrounding IP1 and IP2 (Figure 1). FMD outbreaks were subsequently reported on an additional holding (IP3c) and five more premises (IP4, 5, 6, 7 and 8) all located close to IP3b and outside the original surveillance area (Figure 1).


Transmission pathways of foot-and-mouth disease virus in the United Kingdom in 2007.

Cottam EM, Wadsworth J, Shaw AE, Rowlands RJ, Goatley L, Maan S, Maan NS, Mertens PP, Ebert K, Li Y, Ryan ED, Juleff N, Ferris NP, Wilesmith JW, Haydon DT, King DP, Paton DJ, Knowles NJ - PLoS Pathog. (2008)

The geographical area affected by FMD outbreaks in 2007.The location of premises and holdings are shown (red circles, clinical signs confirmed by laboratory analysis; yellow circles, FMDV detected using laboratory assays in the absence of clinical disease; and ⊗, additional holdings associated with FMD infected premises with no evidence of infection). The shaded areas denote the extent of the 5km protection zones and 10 km surveillance zones established (blue and green representing outbreaks in August and September respectively). The map also shows major towns and motorways in the region and the location of the Pirbright site (star).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2277462&req=5

ppat-1000050-g001: The geographical area affected by FMD outbreaks in 2007.The location of premises and holdings are shown (red circles, clinical signs confirmed by laboratory analysis; yellow circles, FMDV detected using laboratory assays in the absence of clinical disease; and ⊗, additional holdings associated with FMD infected premises with no evidence of infection). The shaded areas denote the extent of the 5km protection zones and 10 km surveillance zones established (blue and green representing outbreaks in August and September respectively). The map also shows major towns and motorways in the region and the location of the Pirbright site (star).
Mentions: The UK 2007 FMD outbreaks have been characterised by the emergence of two temporally and spatially distinct clusters. Eight infected premises (IP1-8: designation of IP numbering is according to The Department for Environment, Food and Rural Affairs [Defra], UK) have been identified (Figure 1 and Table 1), two in August and six in September. The first case (IP1b) was recognised in beef cattle in a field off Westwood Lane, Normandy, Surrey, UK. Samples collected on 3rd August 2007 from animals exhibiting suspect clinical signs were submitted to the World Reference Laboratory for FMD located at the Institute for Animal Health (IAH), Pirbright, Surrey. Within 24 hours, FMDV sequence data obtained from the first IP (holding IP1b) revealed a VP1 gene-identity of 99.84% to FMDV O1 British Field Sample 1860 (O1 BFS 1860); intratypic identities between type O VP1 sequences may be as low as 80% [4]. O1BFS 1860 is a widely used reference and vaccine strain, originally derived from bovine tongue epithelium received at the World Reference Laboratory for FMD at Pirbright in 1967 from a farm near Wrexham, England. The Pirbright site, comprising the laboratories of the IAH and Merial Animal Health Limited (Merial), is situated 4.4 km from the first IP. Both laboratories were working with the O1 BFS 1860 virus strain, making this site a likely source of the outbreak. Three days after the case at IP1b, a second infected premises (IP2b) was identified at Willey Green, approximately 1.5 Km from IP1b. Cattle at a further holding (IP2c) near to and under the same ownership as IP2b were found to be incubating disease at the time of slaughter. Animals on both the affected farms were destroyed and the premises were disinfected. Subsequent clinical and serological surveillance within a 10 km control zone found no evidence of further dissemination of FMD. However, on 12th September 2007, five weeks after the IP1 and IP2 cattle had been culled, FMD was confirmed on the holding of a new IP (IP3b) situated outside the 10 km control zone surrounding IP1 and IP2 (Figure 1). FMD outbreaks were subsequently reported on an additional holding (IP3c) and five more premises (IP4, 5, 6, 7 and 8) all located close to IP3b and outside the original surveillance area (Figure 1).

Bottom Line: Foot-and-mouth disease (FMD) virus causes an acute vesicular disease of domesticated and wild ruminants and pigs.Identifying sources of FMD outbreaks is often confounded by incomplete epidemiological evidence and the numerous routes by which virus can spread (movements of infected animals or their products, contaminated persons, objects, and aerosols).Genetic analysis of complete viral genomes generated in real-time reveals a probable chain of transmission events, predicting undisclosed infected premises, and connecting the second cluster of outbreaks in September to those in August.

View Article: PubMed Central - PubMed

Affiliation: Institute for Animal Health, Pirbright Laboratory, Pirbright, Woking, Surrey, United Kingdom.

ABSTRACT
Foot-and-mouth disease (FMD) virus causes an acute vesicular disease of domesticated and wild ruminants and pigs. Identifying sources of FMD outbreaks is often confounded by incomplete epidemiological evidence and the numerous routes by which virus can spread (movements of infected animals or their products, contaminated persons, objects, and aerosols). Here, we show that the outbreaks of FMD in the United Kingdom in August 2007 were caused by a derivative of FMDV O(1) BFS 1860, a virus strain handled at two FMD laboratories located on a single site at Pirbright in Surrey. Genetic analysis of complete viral genomes generated in real-time reveals a probable chain of transmission events, predicting undisclosed infected premises, and connecting the second cluster of outbreaks in September to those in August. Complete genome sequence analysis of FMD viruses conducted in real-time have identified the initial and intermediate sources of these outbreaks and demonstrate the value of such techniques in providing information useful to contemporary disease control programmes.

Show MeSH
Related in: MedlinePlus