Limits...
DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes.

de Witte L, de Vries RD, van der Vlist M, Yüksel S, Litjens M, de Swart RL, Geijtenbeek TB - PLoS Pathog. (2008)

Bottom Line: Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract.DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro.However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.

ABSTRACT
Measles virus (MV) is among the most infectious viruses that affect humans and is transmitted via the respiratory route. In macaques, MV primarily infects lymphocytes and dendritic cells (DCs). Little is known about the initial target cell for MV infection. Since DCs bridge the peripheral mucosal tissues with lymphoid tissues, we hypothesize that DCs are the initial target cells that capture MV in the respiratory tract and transport the virus to the lymphoid tissues where MV is transmitted to lymphocytes. Recently, we have demonstrated that the C-type lectin DC-SIGN interacts with MV and enhances infection of DCs in cis. Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract. DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro. However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes. We distinguished two different transmission routes that were either dependent or independent on direct DC infection. DC-SIGN and CD150 are both involved in direct DC infection and subsequent transmission of de novo synthesized virus. However, DC-SIGN, but not CD150, mediates trans-infection of MV to T-lymphocytes independent of DC infection. Together these data suggest a prominent role for DCs during the initiation, dissemination, and clearance of MV infection.

Show MeSH

Related in: MedlinePlus

Dendritic cells mediate transmission of measles virus to both CD4+ and CD8+ T-lymphocytes.(A) PBMCs were activated for three days, and the cells were enriched for CD4+ T-lymphocytes or CD8+ T-lymphocytes. T-lymphocytes and DCs are stained for the expression of CD150 and analyzed by flow cytometry. Open histograms represent isotype-control and filled histogram the specific antibody staining. The mean of the specific staining is depicted. (B,C) DCs (5×104 cells) were pre-incubated with mannan before incubation with MV-IC323-EGFP (5×104 TCID50). After 2 hours the cells were washed and cultured in the presence of the CD4+ or CD8+ T-lymphocytes for three days. (B) The cultures were analyzed by fluorescence microscopy and pictures were made at a magnification of 200× (C) The fusion inhibitory peptide (FIP) was added after 2 hours. The cells were harvested and EGFP expression was measured by flow cytometry. Standard deviations represent the standard deviation of triplicates. A representative experiment out of two is shown.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2277461&req=5

ppat-1000049-g006: Dendritic cells mediate transmission of measles virus to both CD4+ and CD8+ T-lymphocytes.(A) PBMCs were activated for three days, and the cells were enriched for CD4+ T-lymphocytes or CD8+ T-lymphocytes. T-lymphocytes and DCs are stained for the expression of CD150 and analyzed by flow cytometry. Open histograms represent isotype-control and filled histogram the specific antibody staining. The mean of the specific staining is depicted. (B,C) DCs (5×104 cells) were pre-incubated with mannan before incubation with MV-IC323-EGFP (5×104 TCID50). After 2 hours the cells were washed and cultured in the presence of the CD4+ or CD8+ T-lymphocytes for three days. (B) The cultures were analyzed by fluorescence microscopy and pictures were made at a magnification of 200× (C) The fusion inhibitory peptide (FIP) was added after 2 hours. The cells were harvested and EGFP expression was measured by flow cytometry. Standard deviations represent the standard deviation of triplicates. A representative experiment out of two is shown.

Mentions: In peripheral blood of experimentally infected macaques, MV infection of both CD4+ and CD8+ T-lymphocytes was observed [2]. Therefore we investigated whether DCs mediate transmission of MV to both T-lymphocyte subsets in vitro. CD4+ and CD8+ T-lymphocytes were purified from PHA-stimulated human peripheral blood mononuclear cells (PBMCs), and both expressed high levels of CD150 (Figure 6A). DCs were infected with MV-IC323-EGFP, and after extensive washing, co-cultured with either CD4+ or CD8+ T-lymphocytes. In both co-cultures, EGFP expression was observed in large clusters containing EGFP+ syncytia, demonstrating that DCs mediate transmission to both T-lymphocyte subsets (Figure 6B). To measure whether DCs mediate trans-infection, FIP was added two hours after addition of the T-lymphocytes to the MV-infected DCs. Trans-infection to both subsets is efficient and mediated by DC-SIGN, since pre-treatment of DCs with mannan inhibited infection of T-lymphocytes in both cultures (Figure 6C). Thus, DCs transmit MV to both CD4+ and CD8+ T-lymphocytes.


DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes.

de Witte L, de Vries RD, van der Vlist M, Yüksel S, Litjens M, de Swart RL, Geijtenbeek TB - PLoS Pathog. (2008)

Dendritic cells mediate transmission of measles virus to both CD4+ and CD8+ T-lymphocytes.(A) PBMCs were activated for three days, and the cells were enriched for CD4+ T-lymphocytes or CD8+ T-lymphocytes. T-lymphocytes and DCs are stained for the expression of CD150 and analyzed by flow cytometry. Open histograms represent isotype-control and filled histogram the specific antibody staining. The mean of the specific staining is depicted. (B,C) DCs (5×104 cells) were pre-incubated with mannan before incubation with MV-IC323-EGFP (5×104 TCID50). After 2 hours the cells were washed and cultured in the presence of the CD4+ or CD8+ T-lymphocytes for three days. (B) The cultures were analyzed by fluorescence microscopy and pictures were made at a magnification of 200× (C) The fusion inhibitory peptide (FIP) was added after 2 hours. The cells were harvested and EGFP expression was measured by flow cytometry. Standard deviations represent the standard deviation of triplicates. A representative experiment out of two is shown.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2277461&req=5

ppat-1000049-g006: Dendritic cells mediate transmission of measles virus to both CD4+ and CD8+ T-lymphocytes.(A) PBMCs were activated for three days, and the cells were enriched for CD4+ T-lymphocytes or CD8+ T-lymphocytes. T-lymphocytes and DCs are stained for the expression of CD150 and analyzed by flow cytometry. Open histograms represent isotype-control and filled histogram the specific antibody staining. The mean of the specific staining is depicted. (B,C) DCs (5×104 cells) were pre-incubated with mannan before incubation with MV-IC323-EGFP (5×104 TCID50). After 2 hours the cells were washed and cultured in the presence of the CD4+ or CD8+ T-lymphocytes for three days. (B) The cultures were analyzed by fluorescence microscopy and pictures were made at a magnification of 200× (C) The fusion inhibitory peptide (FIP) was added after 2 hours. The cells were harvested and EGFP expression was measured by flow cytometry. Standard deviations represent the standard deviation of triplicates. A representative experiment out of two is shown.
Mentions: In peripheral blood of experimentally infected macaques, MV infection of both CD4+ and CD8+ T-lymphocytes was observed [2]. Therefore we investigated whether DCs mediate transmission of MV to both T-lymphocyte subsets in vitro. CD4+ and CD8+ T-lymphocytes were purified from PHA-stimulated human peripheral blood mononuclear cells (PBMCs), and both expressed high levels of CD150 (Figure 6A). DCs were infected with MV-IC323-EGFP, and after extensive washing, co-cultured with either CD4+ or CD8+ T-lymphocytes. In both co-cultures, EGFP expression was observed in large clusters containing EGFP+ syncytia, demonstrating that DCs mediate transmission to both T-lymphocyte subsets (Figure 6B). To measure whether DCs mediate trans-infection, FIP was added two hours after addition of the T-lymphocytes to the MV-infected DCs. Trans-infection to both subsets is efficient and mediated by DC-SIGN, since pre-treatment of DCs with mannan inhibited infection of T-lymphocytes in both cultures (Figure 6C). Thus, DCs transmit MV to both CD4+ and CD8+ T-lymphocytes.

Bottom Line: Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract.DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro.However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.

ABSTRACT
Measles virus (MV) is among the most infectious viruses that affect humans and is transmitted via the respiratory route. In macaques, MV primarily infects lymphocytes and dendritic cells (DCs). Little is known about the initial target cell for MV infection. Since DCs bridge the peripheral mucosal tissues with lymphoid tissues, we hypothesize that DCs are the initial target cells that capture MV in the respiratory tract and transport the virus to the lymphoid tissues where MV is transmitted to lymphocytes. Recently, we have demonstrated that the C-type lectin DC-SIGN interacts with MV and enhances infection of DCs in cis. Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract. DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro. However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes. We distinguished two different transmission routes that were either dependent or independent on direct DC infection. DC-SIGN and CD150 are both involved in direct DC infection and subsequent transmission of de novo synthesized virus. However, DC-SIGN, but not CD150, mediates trans-infection of MV to T-lymphocytes independent of DC infection. Together these data suggest a prominent role for DCs during the initiation, dissemination, and clearance of MV infection.

Show MeSH
Related in: MedlinePlus