Limits...
DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes.

de Witte L, de Vries RD, van der Vlist M, Yüksel S, Litjens M, de Swart RL, Geijtenbeek TB - PLoS Pathog. (2008)

Bottom Line: Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract.DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro.However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.

ABSTRACT
Measles virus (MV) is among the most infectious viruses that affect humans and is transmitted via the respiratory route. In macaques, MV primarily infects lymphocytes and dendritic cells (DCs). Little is known about the initial target cell for MV infection. Since DCs bridge the peripheral mucosal tissues with lymphoid tissues, we hypothesize that DCs are the initial target cells that capture MV in the respiratory tract and transport the virus to the lymphoid tissues where MV is transmitted to lymphocytes. Recently, we have demonstrated that the C-type lectin DC-SIGN interacts with MV and enhances infection of DCs in cis. Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract. DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro. However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes. We distinguished two different transmission routes that were either dependent or independent on direct DC infection. DC-SIGN and CD150 are both involved in direct DC infection and subsequent transmission of de novo synthesized virus. However, DC-SIGN, but not CD150, mediates trans-infection of MV to T-lymphocytes independent of DC infection. Together these data suggest a prominent role for DCs during the initiation, dissemination, and clearance of MV infection.

Show MeSH

Related in: MedlinePlus

Dendritic cells facilitate measles virus infection of T-lymphocytes in clusters that are interconnected.(A–D) T-lymphocytes (2×105 cells), alone or in the presence of DCs (5×104 cells), were pre-incubated with mannan and infected with MV-IC323-EGFP (TCID50 5×104 unless depicted otherwise) and cultured for 72 hours. (A,B) The infection was analyzed by fluorescence microscopy. The magnification is depicted. (B) DCs or T-lymphocytes were labeled red using the membrane dye PKH26 prior to the experiment and infection by MV-IC323-EGFP is shown by EGFP expression (green). (C,D) The infection of DCs and T-lymphocytes was analyzed by measuring EGFP expression by flow cytometry. Standard deviations represent the standard deviation of triplicates. A representative experiment out of two is shown.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2277461&req=5

ppat-1000049-g003: Dendritic cells facilitate measles virus infection of T-lymphocytes in clusters that are interconnected.(A–D) T-lymphocytes (2×105 cells), alone or in the presence of DCs (5×104 cells), were pre-incubated with mannan and infected with MV-IC323-EGFP (TCID50 5×104 unless depicted otherwise) and cultured for 72 hours. (A,B) The infection was analyzed by fluorescence microscopy. The magnification is depicted. (B) DCs or T-lymphocytes were labeled red using the membrane dye PKH26 prior to the experiment and infection by MV-IC323-EGFP is shown by EGFP expression (green). (C,D) The infection of DCs and T-lymphocytes was analyzed by measuring EGFP expression by flow cytometry. Standard deviations represent the standard deviation of triplicates. A representative experiment out of two is shown.

Mentions: DCs capture HIV-1 via DC-SIGN [9], and facilitate the infection of T-lymphocytes by transferring the virus through the infectious synapse [21]. Since DC-SIGN+ DCs and CD150+ lymphocytes closely interact in the lymphoid tissues and the upper respiratory tract (Figure 1), we investigated the role of DCs in MV transmission in DC-T-lymphocyte co-cultures. To analyse viral transmission of DCs to T-lymphocytes we used the recombinant MV-IC323-EGFP strain. This MV strain has similar characteristics as its parental IC-B wild-type strain [22], but infected cells produce high amounts of EGFP. The concentration of EGFP in the cells is directly related to the level of virus replication. The entry receptor for this virus is CD150, and not CD46, similar as MV wild-type strains [6]. DCs were infected with MV-IC323-EGFP, and subsequently co-cultured with PHA-stimulated T-lymphocytes expressing high levels of CD150. After two days the infected cells were analyzed by fluorescence microscopy. MV infection induced the formation of large clusters, which contained multiple EGFP+ syncytia (Figure 3A). Most infected cells were observed in clusters, and notably long EGFP+ dendritic processes were observed that interconnected these clusters (Figure 3A). To investigate which cells were present in the clusters, either DCs or T-lymphocytes were stained with a red dye before infection. Staining of either cell type demonstrated that both infected DCs and T-lymphocytes were present in the EGFP+ clusters (Figure 3B), reminiscent of the in vivo infection of DCs and T-lymphocytes observed in lymphoid tissues of macaques [2].


DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes.

de Witte L, de Vries RD, van der Vlist M, Yüksel S, Litjens M, de Swart RL, Geijtenbeek TB - PLoS Pathog. (2008)

Dendritic cells facilitate measles virus infection of T-lymphocytes in clusters that are interconnected.(A–D) T-lymphocytes (2×105 cells), alone or in the presence of DCs (5×104 cells), were pre-incubated with mannan and infected with MV-IC323-EGFP (TCID50 5×104 unless depicted otherwise) and cultured for 72 hours. (A,B) The infection was analyzed by fluorescence microscopy. The magnification is depicted. (B) DCs or T-lymphocytes were labeled red using the membrane dye PKH26 prior to the experiment and infection by MV-IC323-EGFP is shown by EGFP expression (green). (C,D) The infection of DCs and T-lymphocytes was analyzed by measuring EGFP expression by flow cytometry. Standard deviations represent the standard deviation of triplicates. A representative experiment out of two is shown.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2277461&req=5

ppat-1000049-g003: Dendritic cells facilitate measles virus infection of T-lymphocytes in clusters that are interconnected.(A–D) T-lymphocytes (2×105 cells), alone or in the presence of DCs (5×104 cells), were pre-incubated with mannan and infected with MV-IC323-EGFP (TCID50 5×104 unless depicted otherwise) and cultured for 72 hours. (A,B) The infection was analyzed by fluorescence microscopy. The magnification is depicted. (B) DCs or T-lymphocytes were labeled red using the membrane dye PKH26 prior to the experiment and infection by MV-IC323-EGFP is shown by EGFP expression (green). (C,D) The infection of DCs and T-lymphocytes was analyzed by measuring EGFP expression by flow cytometry. Standard deviations represent the standard deviation of triplicates. A representative experiment out of two is shown.
Mentions: DCs capture HIV-1 via DC-SIGN [9], and facilitate the infection of T-lymphocytes by transferring the virus through the infectious synapse [21]. Since DC-SIGN+ DCs and CD150+ lymphocytes closely interact in the lymphoid tissues and the upper respiratory tract (Figure 1), we investigated the role of DCs in MV transmission in DC-T-lymphocyte co-cultures. To analyse viral transmission of DCs to T-lymphocytes we used the recombinant MV-IC323-EGFP strain. This MV strain has similar characteristics as its parental IC-B wild-type strain [22], but infected cells produce high amounts of EGFP. The concentration of EGFP in the cells is directly related to the level of virus replication. The entry receptor for this virus is CD150, and not CD46, similar as MV wild-type strains [6]. DCs were infected with MV-IC323-EGFP, and subsequently co-cultured with PHA-stimulated T-lymphocytes expressing high levels of CD150. After two days the infected cells were analyzed by fluorescence microscopy. MV infection induced the formation of large clusters, which contained multiple EGFP+ syncytia (Figure 3A). Most infected cells were observed in clusters, and notably long EGFP+ dendritic processes were observed that interconnected these clusters (Figure 3A). To investigate which cells were present in the clusters, either DCs or T-lymphocytes were stained with a red dye before infection. Staining of either cell type demonstrated that both infected DCs and T-lymphocytes were present in the EGFP+ clusters (Figure 3B), reminiscent of the in vivo infection of DCs and T-lymphocytes observed in lymphoid tissues of macaques [2].

Bottom Line: Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract.DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro.However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.

ABSTRACT
Measles virus (MV) is among the most infectious viruses that affect humans and is transmitted via the respiratory route. In macaques, MV primarily infects lymphocytes and dendritic cells (DCs). Little is known about the initial target cell for MV infection. Since DCs bridge the peripheral mucosal tissues with lymphoid tissues, we hypothesize that DCs are the initial target cells that capture MV in the respiratory tract and transport the virus to the lymphoid tissues where MV is transmitted to lymphocytes. Recently, we have demonstrated that the C-type lectin DC-SIGN interacts with MV and enhances infection of DCs in cis. Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract. DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro. However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes. We distinguished two different transmission routes that were either dependent or independent on direct DC infection. DC-SIGN and CD150 are both involved in direct DC infection and subsequent transmission of de novo synthesized virus. However, DC-SIGN, but not CD150, mediates trans-infection of MV to T-lymphocytes independent of DC infection. Together these data suggest a prominent role for DCs during the initiation, dissemination, and clearance of MV infection.

Show MeSH
Related in: MedlinePlus