Limits...
Quantitative urban classification for malaria epidemiology in sub-Saharan Africa.

Siri JG, Lindblade KA, Rosen DH, Onyango B, Vulule J, Slutsker L, Wilson ML - Malar. J. (2008)

Bottom Line: A k-means clustering algorithm was applied to the EA-level factor scores to assign EAs to one of three categories: "urban," "peri-urban," or "semi-rural." The results were compared with classifications derived from two other approaches: a) administrative designation of urban/rural by the census or b) population density thresholds.Urban zones resulting from the clustering algorithm were more geographically coherent than those delineated by population density.Cluster analysis techniques were used to classify Kisumu, Kenya, into levels of urbanization in a repeatable and unbiased manner, an approach that should permit more relevant comparisons among and within urban areas.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA. jsiri@umich.edu

ABSTRACT

Background: Although sub-Saharan Africa (SSA) is rapidly urbanizing, the terms used to classify urban ecotypes are poorly defined in the context of malaria epidemiology. Lack of clear definitions may cause misclassification error, which likely decreases the accuracy of continent-wide estimates of malaria burden, limits the generalizability of urban malaria studies, and makes identification of high-risk areas for targeted interventions within cities more difficult. Accordingly, clustering techniques were applied to a set of urbanization- and malaria-related variables in Kisumu, Kenya, to produce a quantitative classification of the urban environment for malaria research.

Methods: Seven variables with a known or expected relationship with malaria in the context of urbanization were identified and measured at the census enumeration area (EA) level, using three sources: a) the results of a citywide knowledge, attitudes and practices (KAP) survey; b) a high-resolution multispectral satellite image; and c) national census data. Principal components analysis (PCA) was used to identify three factors explaining higher proportions of the combined variance than the original variables. A k-means clustering algorithm was applied to the EA-level factor scores to assign EAs to one of three categories: "urban," "peri-urban," or "semi-rural." The results were compared with classifications derived from two other approaches: a) administrative designation of urban/rural by the census or b) population density thresholds.

Results: Urban zones resulting from the clustering algorithm were more geographically coherent than those delineated by population density. Clustering distributed population more evenly among zones than either of the other methods and more accurately predicted variation in other variables related to urbanization, but not used for classification.

Conclusion: Effective urban malaria epidemiology and control would benefit from quantitative methods to identify and characterize urban areas. Cluster analysis techniques were used to classify Kisumu, Kenya, into levels of urbanization in a repeatable and unbiased manner, an approach that should permit more relevant comparisons among and within urban areas. To the extent that these divisions predict meaningful intra-urban differences in malaria epidemiology, they should inform targeted urban malaria interventions in cities across SSA.

Show MeSH

Related in: MedlinePlus

Classification of level of urbanization in Kisumu, Kenya using three methods. a) Classification based on administrative designation as rural or urban; b) Classification based on population density thresholds: urban > 1,000/km2; peri-urban > 500/km2; c) Classification based on k-means clustering of factors identified through principal components analysis. In all cases, darker regions are more urban.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2277427&req=5

Figure 2: Classification of level of urbanization in Kisumu, Kenya using three methods. a) Classification based on administrative designation as rural or urban; b) Classification based on population density thresholds: urban > 1,000/km2; peri-urban > 500/km2; c) Classification based on k-means clustering of factors identified through principal components analysis. In all cases, darker regions are more urban.

Mentions: The clustering algorithm applied to these factors indicated zones that were more continuous and geographically well defined than those identified through the use of population density thresholds (Figure 2), although administratively designated urban zones were similarly coherent. The classification produced by clustering incorporated greater proportions of the population in semi-rural (29.6%) and peri-urban (54.6%) zones than the other methods, both of which placed over 90% of people in the urban zone. The clustering classification also yielded a wider range of responses (Figure 2) and higher chi-square values (Table 2) across zones for car ownership and use of gas as a primary fuel source than the other classifications. All three classifications yielded a wide range of responses among urban zones and high chi-square values for having earthen floors in the dwelling. Unlike classification based on population density thresholds, the clustering method retained all EAs administratively classified as rural within the semi-rural category.


Quantitative urban classification for malaria epidemiology in sub-Saharan Africa.

Siri JG, Lindblade KA, Rosen DH, Onyango B, Vulule J, Slutsker L, Wilson ML - Malar. J. (2008)

Classification of level of urbanization in Kisumu, Kenya using three methods. a) Classification based on administrative designation as rural or urban; b) Classification based on population density thresholds: urban > 1,000/km2; peri-urban > 500/km2; c) Classification based on k-means clustering of factors identified through principal components analysis. In all cases, darker regions are more urban.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2277427&req=5

Figure 2: Classification of level of urbanization in Kisumu, Kenya using three methods. a) Classification based on administrative designation as rural or urban; b) Classification based on population density thresholds: urban > 1,000/km2; peri-urban > 500/km2; c) Classification based on k-means clustering of factors identified through principal components analysis. In all cases, darker regions are more urban.
Mentions: The clustering algorithm applied to these factors indicated zones that were more continuous and geographically well defined than those identified through the use of population density thresholds (Figure 2), although administratively designated urban zones were similarly coherent. The classification produced by clustering incorporated greater proportions of the population in semi-rural (29.6%) and peri-urban (54.6%) zones than the other methods, both of which placed over 90% of people in the urban zone. The clustering classification also yielded a wider range of responses (Figure 2) and higher chi-square values (Table 2) across zones for car ownership and use of gas as a primary fuel source than the other classifications. All three classifications yielded a wide range of responses among urban zones and high chi-square values for having earthen floors in the dwelling. Unlike classification based on population density thresholds, the clustering method retained all EAs administratively classified as rural within the semi-rural category.

Bottom Line: A k-means clustering algorithm was applied to the EA-level factor scores to assign EAs to one of three categories: "urban," "peri-urban," or "semi-rural." The results were compared with classifications derived from two other approaches: a) administrative designation of urban/rural by the census or b) population density thresholds.Urban zones resulting from the clustering algorithm were more geographically coherent than those delineated by population density.Cluster analysis techniques were used to classify Kisumu, Kenya, into levels of urbanization in a repeatable and unbiased manner, an approach that should permit more relevant comparisons among and within urban areas.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA. jsiri@umich.edu

ABSTRACT

Background: Although sub-Saharan Africa (SSA) is rapidly urbanizing, the terms used to classify urban ecotypes are poorly defined in the context of malaria epidemiology. Lack of clear definitions may cause misclassification error, which likely decreases the accuracy of continent-wide estimates of malaria burden, limits the generalizability of urban malaria studies, and makes identification of high-risk areas for targeted interventions within cities more difficult. Accordingly, clustering techniques were applied to a set of urbanization- and malaria-related variables in Kisumu, Kenya, to produce a quantitative classification of the urban environment for malaria research.

Methods: Seven variables with a known or expected relationship with malaria in the context of urbanization were identified and measured at the census enumeration area (EA) level, using three sources: a) the results of a citywide knowledge, attitudes and practices (KAP) survey; b) a high-resolution multispectral satellite image; and c) national census data. Principal components analysis (PCA) was used to identify three factors explaining higher proportions of the combined variance than the original variables. A k-means clustering algorithm was applied to the EA-level factor scores to assign EAs to one of three categories: "urban," "peri-urban," or "semi-rural." The results were compared with classifications derived from two other approaches: a) administrative designation of urban/rural by the census or b) population density thresholds.

Results: Urban zones resulting from the clustering algorithm were more geographically coherent than those delineated by population density. Clustering distributed population more evenly among zones than either of the other methods and more accurately predicted variation in other variables related to urbanization, but not used for classification.

Conclusion: Effective urban malaria epidemiology and control would benefit from quantitative methods to identify and characterize urban areas. Cluster analysis techniques were used to classify Kisumu, Kenya, into levels of urbanization in a repeatable and unbiased manner, an approach that should permit more relevant comparisons among and within urban areas. To the extent that these divisions predict meaningful intra-urban differences in malaria epidemiology, they should inform targeted urban malaria interventions in cities across SSA.

Show MeSH
Related in: MedlinePlus