Limits...
Ultrasound evaluation in combination with finger extension force measurements of the forearm musculus extensor digitorum communis in healthy subjects.

Brorsson S, Nilsdotter A, Hilliges M, Sollerman C, Aurell Y - BMC Med Imaging (2008)

Bottom Line: Significant differences were found between men and women regarding EDC volume (p < 0.001), CSA (p < 0.001), pennation angle (p < 0.05), muscle thickness (p < 0.001), fascicle length (p < 0.001) and finger force (p < 0.001).Muscle parameters of importance for force development were identified.Knowledge concerning the correlation between muscle dynamics and force is of importance for the development of new hand training programmes and rehabilitation after surgery.

View Article: PubMed Central - HTML - PubMed

Affiliation: PRODEA research group, Halmstad University, Halmstad, Sweden. sofia.olandersson@set.hh.se

ABSTRACT

Background: The aim of this study was to evaluate the usefulness of an ultrasound-based method of examining extensor muscle architecture, especially the parameters important for force development. This paper presents the combination of two non-invasive methods for studying the extensor muscle architecture using ultrasound simultaneously with finger extension force measurements.

Methods: M. extensor digitorum communis (EDC) was examined in 40 healthy subjects, 20 women and 20 men, aged 35-73 years. Ultrasound measurements were made in a relaxed position of the hand as well as in full contraction. Muscle cross-sectional area (CSA), pennation angle and contraction patterns were measured with ultrasound, and muscle volume and fascicle length were also estimated. Finger extension force was measured using a newly developed finger force measurement device.

Results: The following muscle parameters were determined: CSA, circumference, thickness, pennation angles and changes in shape of the muscle CSA. The mean EDC volume in men was 28.3 cm3 and in women 16.6 cm3. The mean CSA was 2.54 cm2 for men and 1.84 cm2 for women. The mean pennation angle for men was 6.5 degrees and for women 5.5 degrees . The mean muscle thickness for men was 1.2 cm and for women 0.76 cm. The mean fascicle length for men was 7.3 cm and for women 5.0 cm. Significant differences were found between men and women regarding EDC volume (p < 0.001), CSA (p < 0.001), pennation angle (p < 0.05), muscle thickness (p < 0.001), fascicle length (p < 0.001) and finger force (p < 0.001). Changes in the shape of muscle architecture during contraction were more pronounced in men than women (p < 0.01). The mean finger extension force for men was 96.7 N and for women 39.6 N. Muscle parameters related to the extension force differed between men and women. For men the muscle volume and muscle CSA were related to extension force, while for women muscle thickness was related to the extension force.

Conclusion: Ultrasound is a useful tool for studying muscle architectures in EDC. Muscle parameters of importance for force development were identified. Knowledge concerning the correlation between muscle dynamics and force is of importance for the development of new hand training programmes and rehabilitation after surgery.

Show MeSH

Related in: MedlinePlus

US measuring point. (A) Position of the probe for ultrasound measurements of the EDC, 15% distal of the EDC origin. (B) Transverse US image obtained at the measurement position (contracted muscle). The circumference is shown by the dotted line, the cross-sectional area is the area within the line, and the muscle thickness is indicated by the double-headed arrow.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2268922&req=5

Figure 3: US measuring point. (A) Position of the probe for ultrasound measurements of the EDC, 15% distal of the EDC origin. (B) Transverse US image obtained at the measurement position (contracted muscle). The circumference is shown by the dotted line, the cross-sectional area is the area within the line, and the muscle thickness is indicated by the double-headed arrow.

Mentions: Limb lengths were measured using anatomical landmarks: underarm length, and the distances between the olecranon process of the ulna and the processus styloideus of the ulna. For measurement purposes, the live US images (cine-loops in the transverse and longitudinal planes) were reviewed and measurements were carried out on the still US image of the completely relaxed muscle, as well as the fully contracted muscle (live cine-loops). The optimal and standardized location for US measurements was a point distal from the origin of the EDC (the lateral epicondyle) corresponding to 15% of the total arm length (Fig. 3). This location exhibited the largest muscle area, which was clearly defined and thus easy to measure, and is referred to as the measuring point in the text.


Ultrasound evaluation in combination with finger extension force measurements of the forearm musculus extensor digitorum communis in healthy subjects.

Brorsson S, Nilsdotter A, Hilliges M, Sollerman C, Aurell Y - BMC Med Imaging (2008)

US measuring point. (A) Position of the probe for ultrasound measurements of the EDC, 15% distal of the EDC origin. (B) Transverse US image obtained at the measurement position (contracted muscle). The circumference is shown by the dotted line, the cross-sectional area is the area within the line, and the muscle thickness is indicated by the double-headed arrow.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2268922&req=5

Figure 3: US measuring point. (A) Position of the probe for ultrasound measurements of the EDC, 15% distal of the EDC origin. (B) Transverse US image obtained at the measurement position (contracted muscle). The circumference is shown by the dotted line, the cross-sectional area is the area within the line, and the muscle thickness is indicated by the double-headed arrow.
Mentions: Limb lengths were measured using anatomical landmarks: underarm length, and the distances between the olecranon process of the ulna and the processus styloideus of the ulna. For measurement purposes, the live US images (cine-loops in the transverse and longitudinal planes) were reviewed and measurements were carried out on the still US image of the completely relaxed muscle, as well as the fully contracted muscle (live cine-loops). The optimal and standardized location for US measurements was a point distal from the origin of the EDC (the lateral epicondyle) corresponding to 15% of the total arm length (Fig. 3). This location exhibited the largest muscle area, which was clearly defined and thus easy to measure, and is referred to as the measuring point in the text.

Bottom Line: Significant differences were found between men and women regarding EDC volume (p < 0.001), CSA (p < 0.001), pennation angle (p < 0.05), muscle thickness (p < 0.001), fascicle length (p < 0.001) and finger force (p < 0.001).Muscle parameters of importance for force development were identified.Knowledge concerning the correlation between muscle dynamics and force is of importance for the development of new hand training programmes and rehabilitation after surgery.

View Article: PubMed Central - HTML - PubMed

Affiliation: PRODEA research group, Halmstad University, Halmstad, Sweden. sofia.olandersson@set.hh.se

ABSTRACT

Background: The aim of this study was to evaluate the usefulness of an ultrasound-based method of examining extensor muscle architecture, especially the parameters important for force development. This paper presents the combination of two non-invasive methods for studying the extensor muscle architecture using ultrasound simultaneously with finger extension force measurements.

Methods: M. extensor digitorum communis (EDC) was examined in 40 healthy subjects, 20 women and 20 men, aged 35-73 years. Ultrasound measurements were made in a relaxed position of the hand as well as in full contraction. Muscle cross-sectional area (CSA), pennation angle and contraction patterns were measured with ultrasound, and muscle volume and fascicle length were also estimated. Finger extension force was measured using a newly developed finger force measurement device.

Results: The following muscle parameters were determined: CSA, circumference, thickness, pennation angles and changes in shape of the muscle CSA. The mean EDC volume in men was 28.3 cm3 and in women 16.6 cm3. The mean CSA was 2.54 cm2 for men and 1.84 cm2 for women. The mean pennation angle for men was 6.5 degrees and for women 5.5 degrees . The mean muscle thickness for men was 1.2 cm and for women 0.76 cm. The mean fascicle length for men was 7.3 cm and for women 5.0 cm. Significant differences were found between men and women regarding EDC volume (p < 0.001), CSA (p < 0.001), pennation angle (p < 0.05), muscle thickness (p < 0.001), fascicle length (p < 0.001) and finger force (p < 0.001). Changes in the shape of muscle architecture during contraction were more pronounced in men than women (p < 0.01). The mean finger extension force for men was 96.7 N and for women 39.6 N. Muscle parameters related to the extension force differed between men and women. For men the muscle volume and muscle CSA were related to extension force, while for women muscle thickness was related to the extension force.

Conclusion: Ultrasound is a useful tool for studying muscle architectures in EDC. Muscle parameters of importance for force development were identified. Knowledge concerning the correlation between muscle dynamics and force is of importance for the development of new hand training programmes and rehabilitation after surgery.

Show MeSH
Related in: MedlinePlus