Limits...
Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas.

Okada H, Lieberman FS, Walter KA, Lunsford LD, Kondziolka DS, Bejjani GK, Hamilton RL, Torres-Trejo A, Kalinski P, Cai Q, Mabold JL, Edington HD, Butterfield LH, Whiteside TL, Potter DM, Schold SC, Pollack IF - J Transl Med (2007)

Bottom Line: Interferon (IFN)-gamma Enzyme-Linked Immuno-SPOT (ELISPOT) assay in another human leukocyte antigen (HLA)-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA) epitope EphA2883-891.Treatment was well tolerated; however, we were unable to observe detectable IFN-gamma post-vaccine responses or prolonged progression-free survival in these participants.Nevertheless, successful generation of type-1 DCs and preliminary safety in the current study provide a strong rationale for further efforts to develop novel glioma vaccines.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. okadah@upmc.edu

ABSTRACT

Background: The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL)-4 gene transfected fibroblasts.

Methods: In University of Pittsburgh Cancer Institute (UPCI) protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM) or anaplastic astrocytoma (AA) received gross total resection (GTR) of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC) loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging.

Results and discussion: In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN)-gamma Enzyme-Linked Immuno-SPOT (ELISPOT) assay in another human leukocyte antigen (HLA)-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA) epitope EphA2883-891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants received scheduled vaccinations with no incidence of major adverse events. Monocyte-derived DCs produced high levels of IL-12 p70. Treatment was well tolerated; however, we were unable to observe detectable IFN-gamma post-vaccine responses or prolonged progression-free survival in these participants.

Conclusion: Feasibility challenges inherent in the generation of a patient-specific gene transfection-based vaccine strongly suggests the need for more practical formulations that would allow for the timely administration of vaccines. Nevertheless, successful generation of type-1 DCs and preliminary safety in the current study provide a strong rationale for further efforts to develop novel glioma vaccines.

Show MeSH

Related in: MedlinePlus

IL-4 gene transfected glioma cell vaccine elicited an IFN-γ response against EphA2 883–891 epitope. PBMC samples were obtained on days 1 (pre-vaccine on the day of the first vaccine), 8, 15 (on the day of the second vaccine), and 42, and saved as frozen cells until all these cells were thawed at the same time, cultured in the presence of 20 IU/ml hIL-2 and autologous glioma cells for 5 days, and evaluated for the frequency of IFN-γ-producing cells in response to T2 cells loaded with the HLA-A2-binding EphA2883–891 peptide using ELISPOT assay. Each well contained 5 × 104 CD8+ cells and each group was evaluated in triplicate. Specific IFN-γ spots were calculated by subtracting the average of control spots (triplicate variation within a group was less than 10% in non-peptide-loaded T2 cell groups) from the total numbers of spots in peptide-loaded groups. Values indicate averages of triplicate samples for each time point, and bars indicate standard deviations. The number of spots in each post-vaccine time point was at least three times the standard-deviation of the pre-vaccine value.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2254376&req=5

Figure 2: IL-4 gene transfected glioma cell vaccine elicited an IFN-γ response against EphA2 883–891 epitope. PBMC samples were obtained on days 1 (pre-vaccine on the day of the first vaccine), 8, 15 (on the day of the second vaccine), and 42, and saved as frozen cells until all these cells were thawed at the same time, cultured in the presence of 20 IU/ml hIL-2 and autologous glioma cells for 5 days, and evaluated for the frequency of IFN-γ-producing cells in response to T2 cells loaded with the HLA-A2-binding EphA2883–891 peptide using ELISPOT assay. Each well contained 5 × 104 CD8+ cells and each group was evaluated in triplicate. Specific IFN-γ spots were calculated by subtracting the average of control spots (triplicate variation within a group was less than 10% in non-peptide-loaded T2 cell groups) from the total numbers of spots in peptide-loaded groups. Values indicate averages of triplicate samples for each time point, and bars indicate standard deviations. The number of spots in each post-vaccine time point was at least three times the standard-deviation of the pre-vaccine value.

Mentions: In UPCI 95-033, two participants who received vaccinations against their recurrent GBM demonstrated local (the first patient) or systemic (the second patient) immunological responses. Biopsies from the vaccine sites of the first patient displayed IL-4 dose-dependent infiltration of CD4+ and CD8+ T cells [23]. Although ELISPOT assays did not demonstrate a systemic immune response against autologous glioma cells in this patient, the second vaccine recipient in this trial was HLA-A2-positive, allowing us to evaluate the induction of systemic T-cell responses against the HLA-A2-restricted GAA epitopes EphA2883–891 [19] and IL-13Rα2345–353 [18] using ELISPOT assays. In this patient, vaccinations using autologous glioma as the antigen source induced a specific IFN-γ response against EphA2883–891 that was sustained for at least 6 weeks post-vaccination (Figure 2), although a specific response against IL-13Rα2345–353or autologous bulk glioma cells was not detectable in the same assays. No PBMC samples were collected at any later time points, and thus we were unable to monitor the persistence of such responses for longer periods of time. Immunohistochemical analysis of the vaccine site biopsy sample, which was performed in the first patient [23], was not performed for the second patient due to suboptimal sample quality.


Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas.

Okada H, Lieberman FS, Walter KA, Lunsford LD, Kondziolka DS, Bejjani GK, Hamilton RL, Torres-Trejo A, Kalinski P, Cai Q, Mabold JL, Edington HD, Butterfield LH, Whiteside TL, Potter DM, Schold SC, Pollack IF - J Transl Med (2007)

IL-4 gene transfected glioma cell vaccine elicited an IFN-γ response against EphA2 883–891 epitope. PBMC samples were obtained on days 1 (pre-vaccine on the day of the first vaccine), 8, 15 (on the day of the second vaccine), and 42, and saved as frozen cells until all these cells were thawed at the same time, cultured in the presence of 20 IU/ml hIL-2 and autologous glioma cells for 5 days, and evaluated for the frequency of IFN-γ-producing cells in response to T2 cells loaded with the HLA-A2-binding EphA2883–891 peptide using ELISPOT assay. Each well contained 5 × 104 CD8+ cells and each group was evaluated in triplicate. Specific IFN-γ spots were calculated by subtracting the average of control spots (triplicate variation within a group was less than 10% in non-peptide-loaded T2 cell groups) from the total numbers of spots in peptide-loaded groups. Values indicate averages of triplicate samples for each time point, and bars indicate standard deviations. The number of spots in each post-vaccine time point was at least three times the standard-deviation of the pre-vaccine value.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2254376&req=5

Figure 2: IL-4 gene transfected glioma cell vaccine elicited an IFN-γ response against EphA2 883–891 epitope. PBMC samples were obtained on days 1 (pre-vaccine on the day of the first vaccine), 8, 15 (on the day of the second vaccine), and 42, and saved as frozen cells until all these cells were thawed at the same time, cultured in the presence of 20 IU/ml hIL-2 and autologous glioma cells for 5 days, and evaluated for the frequency of IFN-γ-producing cells in response to T2 cells loaded with the HLA-A2-binding EphA2883–891 peptide using ELISPOT assay. Each well contained 5 × 104 CD8+ cells and each group was evaluated in triplicate. Specific IFN-γ spots were calculated by subtracting the average of control spots (triplicate variation within a group was less than 10% in non-peptide-loaded T2 cell groups) from the total numbers of spots in peptide-loaded groups. Values indicate averages of triplicate samples for each time point, and bars indicate standard deviations. The number of spots in each post-vaccine time point was at least three times the standard-deviation of the pre-vaccine value.
Mentions: In UPCI 95-033, two participants who received vaccinations against their recurrent GBM demonstrated local (the first patient) or systemic (the second patient) immunological responses. Biopsies from the vaccine sites of the first patient displayed IL-4 dose-dependent infiltration of CD4+ and CD8+ T cells [23]. Although ELISPOT assays did not demonstrate a systemic immune response against autologous glioma cells in this patient, the second vaccine recipient in this trial was HLA-A2-positive, allowing us to evaluate the induction of systemic T-cell responses against the HLA-A2-restricted GAA epitopes EphA2883–891 [19] and IL-13Rα2345–353 [18] using ELISPOT assays. In this patient, vaccinations using autologous glioma as the antigen source induced a specific IFN-γ response against EphA2883–891 that was sustained for at least 6 weeks post-vaccination (Figure 2), although a specific response against IL-13Rα2345–353or autologous bulk glioma cells was not detectable in the same assays. No PBMC samples were collected at any later time points, and thus we were unable to monitor the persistence of such responses for longer periods of time. Immunohistochemical analysis of the vaccine site biopsy sample, which was performed in the first patient [23], was not performed for the second patient due to suboptimal sample quality.

Bottom Line: Interferon (IFN)-gamma Enzyme-Linked Immuno-SPOT (ELISPOT) assay in another human leukocyte antigen (HLA)-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA) epitope EphA2883-891.Treatment was well tolerated; however, we were unable to observe detectable IFN-gamma post-vaccine responses or prolonged progression-free survival in these participants.Nevertheless, successful generation of type-1 DCs and preliminary safety in the current study provide a strong rationale for further efforts to develop novel glioma vaccines.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. okadah@upmc.edu

ABSTRACT

Background: The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL)-4 gene transfected fibroblasts.

Methods: In University of Pittsburgh Cancer Institute (UPCI) protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM) or anaplastic astrocytoma (AA) received gross total resection (GTR) of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC) loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging.

Results and discussion: In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN)-gamma Enzyme-Linked Immuno-SPOT (ELISPOT) assay in another human leukocyte antigen (HLA)-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA) epitope EphA2883-891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants received scheduled vaccinations with no incidence of major adverse events. Monocyte-derived DCs produced high levels of IL-12 p70. Treatment was well tolerated; however, we were unable to observe detectable IFN-gamma post-vaccine responses or prolonged progression-free survival in these participants.

Conclusion: Feasibility challenges inherent in the generation of a patient-specific gene transfection-based vaccine strongly suggests the need for more practical formulations that would allow for the timely administration of vaccines. Nevertheless, successful generation of type-1 DCs and preliminary safety in the current study provide a strong rationale for further efforts to develop novel glioma vaccines.

Show MeSH
Related in: MedlinePlus