Limits...
Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule.

Rescan PY, Montfort J, Rallière C, Le Cam A, Esquerré D, Hugot K - BMC Genomics (2007)

Bottom Line: Finally, a fourth cluster of 200 genes overexpressed only in 36-day refed trout muscle contained genes with function in carbohydrate metabolism and lipid biosynthesis.Our study is the first demonstration of a coordinated expression of functionally related genes during muscle recovery growth.Furthermore, the generation of a useful database of novel genes associated with muscle recovery growth will allow further investigations on particular genes, pathways or cellular process involved in muscle growth and regeneration.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Institute for Agricultural Research, Joint Research Unit for Fish Physiology, Biodiversity and the Environment, INRA Scribe, IFR140, Campus de Beaulieu, 35042 Rennes, France. pierre-yves.rescan@rennes.inra.fr

ABSTRACT

Background: Recovery growth is a phase of rapid growth that is triggered by adequate refeeding of animals following a period of weight loss caused by starvation. In this study, to obtain more information on the system-wide integration of recovery growth in muscle, we undertook a time-course analysis of transcript expression in trout subjected to a food deprivation-refeeding sequence. For this purpose complex targets produced from muscle of trout fasted for one month and from muscle of trout fasted for one month and then refed for 4, 7, 11 and 36 days were hybridized to cDNA microarrays containing 9023 clones.

Results: Significance analysis of microarrays (SAM) and temporal expression profiling led to the segregation of differentially expressed genes into four major clusters. One cluster comprising 1020 genes with high expression in muscle from fasted animals included a large set of genes involved in protein catabolism. A second cluster that included approximately 550 genes with transient induction 4 to 11 days post-refeeding was dominated by genes involved in transcription, ribosomal biogenesis, translation, chaperone activity, mitochondrial production of ATP and cell division. A third cluster that contained 480 genes that were up-regulated 7 to 36 days post-refeeding was enriched with genes involved in reticulum and Golgi dynamics and with genes indicative of myofiber and muscle remodelling such as genes encoding sarcomeric proteins and matrix compounds. Finally, a fourth cluster of 200 genes overexpressed only in 36-day refed trout muscle contained genes with function in carbohydrate metabolism and lipid biosynthesis. Remarkably, among the genes induced were several transcriptional regulators which might be important for the gene-specific transcriptional adaptations that underlie muscle recovery.

Conclusion: Our study is the first demonstration of a coordinated expression of functionally related genes during muscle recovery growth. Furthermore, the generation of a useful database of novel genes associated with muscle recovery growth will allow further investigations on particular genes, pathways or cellular process involved in muscle growth and regeneration.

Show MeSH

Related in: MedlinePlus

Supervised clustering of SAM selected genes belonging to cluster III and involved in cytoskeletal and myofibrillar organisation. Columns as in figure 2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2238769&req=5

Figure 11: Supervised clustering of SAM selected genes belonging to cluster III and involved in cytoskeletal and myofibrillar organisation. Columns as in figure 2.

Mentions: Cluster III that contained approximately 480 genes up-regulated 7 to 36 days post refeeding was enriched in genes that encode components of the reticulum and Golgi apparatus such as triadin, and exostosin-2, and proteins involved in transport from the reticulum to the Golgi apparatus including golgi SNAP receptor complex member 1 (Fig. 10). Numerous genes in cluster III function in actin cytoskeletal rearrangements (including dynactin subunit 6, actin-like protein 3, actin-related protein 2/3 complex subunits and ankyrins) and organisation of the sarcomere (skeletal actin, myosins, tropomyosins, troponins, nebulin) (Fig. 11). Also were grouped in cluster III several collagen genes (collagen alpha 1(I), alpha 2(I), alpha 5 (IV) and alpha 1 (V) chains) that participate in the synthesis of the muscle extracellular matrix. Among the genes of cluster III with miscellaneous function were several Ras-related proteins such as Rab-24, Rab-26, and Rab-11b, several members of the glutathione S-transferase family, the bifunctional methylene tetrahydrofolate precursor and the myeloid leukaemia factor 1 (MLF1).


Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule.

Rescan PY, Montfort J, Rallière C, Le Cam A, Esquerré D, Hugot K - BMC Genomics (2007)

Supervised clustering of SAM selected genes belonging to cluster III and involved in cytoskeletal and myofibrillar organisation. Columns as in figure 2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2238769&req=5

Figure 11: Supervised clustering of SAM selected genes belonging to cluster III and involved in cytoskeletal and myofibrillar organisation. Columns as in figure 2.
Mentions: Cluster III that contained approximately 480 genes up-regulated 7 to 36 days post refeeding was enriched in genes that encode components of the reticulum and Golgi apparatus such as triadin, and exostosin-2, and proteins involved in transport from the reticulum to the Golgi apparatus including golgi SNAP receptor complex member 1 (Fig. 10). Numerous genes in cluster III function in actin cytoskeletal rearrangements (including dynactin subunit 6, actin-like protein 3, actin-related protein 2/3 complex subunits and ankyrins) and organisation of the sarcomere (skeletal actin, myosins, tropomyosins, troponins, nebulin) (Fig. 11). Also were grouped in cluster III several collagen genes (collagen alpha 1(I), alpha 2(I), alpha 5 (IV) and alpha 1 (V) chains) that participate in the synthesis of the muscle extracellular matrix. Among the genes of cluster III with miscellaneous function were several Ras-related proteins such as Rab-24, Rab-26, and Rab-11b, several members of the glutathione S-transferase family, the bifunctional methylene tetrahydrofolate precursor and the myeloid leukaemia factor 1 (MLF1).

Bottom Line: Finally, a fourth cluster of 200 genes overexpressed only in 36-day refed trout muscle contained genes with function in carbohydrate metabolism and lipid biosynthesis.Our study is the first demonstration of a coordinated expression of functionally related genes during muscle recovery growth.Furthermore, the generation of a useful database of novel genes associated with muscle recovery growth will allow further investigations on particular genes, pathways or cellular process involved in muscle growth and regeneration.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Institute for Agricultural Research, Joint Research Unit for Fish Physiology, Biodiversity and the Environment, INRA Scribe, IFR140, Campus de Beaulieu, 35042 Rennes, France. pierre-yves.rescan@rennes.inra.fr

ABSTRACT

Background: Recovery growth is a phase of rapid growth that is triggered by adequate refeeding of animals following a period of weight loss caused by starvation. In this study, to obtain more information on the system-wide integration of recovery growth in muscle, we undertook a time-course analysis of transcript expression in trout subjected to a food deprivation-refeeding sequence. For this purpose complex targets produced from muscle of trout fasted for one month and from muscle of trout fasted for one month and then refed for 4, 7, 11 and 36 days were hybridized to cDNA microarrays containing 9023 clones.

Results: Significance analysis of microarrays (SAM) and temporal expression profiling led to the segregation of differentially expressed genes into four major clusters. One cluster comprising 1020 genes with high expression in muscle from fasted animals included a large set of genes involved in protein catabolism. A second cluster that included approximately 550 genes with transient induction 4 to 11 days post-refeeding was dominated by genes involved in transcription, ribosomal biogenesis, translation, chaperone activity, mitochondrial production of ATP and cell division. A third cluster that contained 480 genes that were up-regulated 7 to 36 days post-refeeding was enriched with genes involved in reticulum and Golgi dynamics and with genes indicative of myofiber and muscle remodelling such as genes encoding sarcomeric proteins and matrix compounds. Finally, a fourth cluster of 200 genes overexpressed only in 36-day refed trout muscle contained genes with function in carbohydrate metabolism and lipid biosynthesis. Remarkably, among the genes induced were several transcriptional regulators which might be important for the gene-specific transcriptional adaptations that underlie muscle recovery.

Conclusion: Our study is the first demonstration of a coordinated expression of functionally related genes during muscle recovery growth. Furthermore, the generation of a useful database of novel genes associated with muscle recovery growth will allow further investigations on particular genes, pathways or cellular process involved in muscle growth and regeneration.

Show MeSH
Related in: MedlinePlus