Limits...
Simian virus 40 vectors for pulmonary gene therapy.

Eid L, Bromberg Z, El-Latif MA, Zeira E, Oppenheim A, Weiss YG - Respir. Res. (2007)

Bottom Line: Moreover, our results showed vector presence in type II alveolar cells.The vector did not induce significant cellular immune response.These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Anesthesiology and Critical Care Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, 91120, Israel. luminita25@yahoo.com

ABSTRACT

Background: Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS). Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40) vectors for pulmonary gene therapy.

Methods: Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP). SV40 vectors carrying the luciferase reporter gene (SV/luc) were administered intratracheally immediately after sepsis induction. Sham operated (SO) as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C). Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector.

Results: Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response.

Conclusion: In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.

Show MeSH

Related in: MedlinePlus

Immunostaining for CD3+ T cell. 7a: Spleen tissue from 2CLP rats serving as positive control for CD3+ T cell immunostainin 7b: left: minimal lymphocytic infiltration of the lung tissue in SO rat. Middle: moderate infiltration in a 2CLP lung rat after SV/luc administration. Right: moderate infiltration in a 2CLP lung rat not treated with SV/luc. Note that the degree of lymphocyte infiltration is similar in the middle and right panels, suggesting that it is part of the disease process rather than being induced by the vector.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2238754&req=5

Figure 7: Immunostaining for CD3+ T cell. 7a: Spleen tissue from 2CLP rats serving as positive control for CD3+ T cell immunostainin 7b: left: minimal lymphocytic infiltration of the lung tissue in SO rat. Middle: moderate infiltration in a 2CLP lung rat after SV/luc administration. Right: moderate infiltration in a 2CLP lung rat not treated with SV/luc. Note that the degree of lymphocyte infiltration is similar in the middle and right panels, suggesting that it is part of the disease process rather than being induced by the vector.

Mentions: Direct intratracheal administration of SV/luc induced no immunological response as measured by lymphocytic and neutrophilic infiltration of the H&E stained lung sections compared to PBS treated septic lung (Figure 1). To further confirm this we performed immunohistochemical detection for lymphocytic (CD3+ T cells) infiltration (Figure 7a, 7b). As expected, inflammatory cell infiltration was higher in the ARDS compared to the SO lungs. However lymphocytic infiltration in the SV/luc and PBS treated septic rats was similar, indicating that the SV40 vector does not elicite an excessive cellular immune response. These findings support our previous results which demonstrated that there was no cellular immune response against the vector or the transgene following liver transduction by the SV/luc vector, measured by lymphocyte proliferation assay at 84–110 days following vector administration [30].


Simian virus 40 vectors for pulmonary gene therapy.

Eid L, Bromberg Z, El-Latif MA, Zeira E, Oppenheim A, Weiss YG - Respir. Res. (2007)

Immunostaining for CD3+ T cell. 7a: Spleen tissue from 2CLP rats serving as positive control for CD3+ T cell immunostainin 7b: left: minimal lymphocytic infiltration of the lung tissue in SO rat. Middle: moderate infiltration in a 2CLP lung rat after SV/luc administration. Right: moderate infiltration in a 2CLP lung rat not treated with SV/luc. Note that the degree of lymphocyte infiltration is similar in the middle and right panels, suggesting that it is part of the disease process rather than being induced by the vector.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2238754&req=5

Figure 7: Immunostaining for CD3+ T cell. 7a: Spleen tissue from 2CLP rats serving as positive control for CD3+ T cell immunostainin 7b: left: minimal lymphocytic infiltration of the lung tissue in SO rat. Middle: moderate infiltration in a 2CLP lung rat after SV/luc administration. Right: moderate infiltration in a 2CLP lung rat not treated with SV/luc. Note that the degree of lymphocyte infiltration is similar in the middle and right panels, suggesting that it is part of the disease process rather than being induced by the vector.
Mentions: Direct intratracheal administration of SV/luc induced no immunological response as measured by lymphocytic and neutrophilic infiltration of the H&E stained lung sections compared to PBS treated septic lung (Figure 1). To further confirm this we performed immunohistochemical detection for lymphocytic (CD3+ T cells) infiltration (Figure 7a, 7b). As expected, inflammatory cell infiltration was higher in the ARDS compared to the SO lungs. However lymphocytic infiltration in the SV/luc and PBS treated septic rats was similar, indicating that the SV40 vector does not elicite an excessive cellular immune response. These findings support our previous results which demonstrated that there was no cellular immune response against the vector or the transgene following liver transduction by the SV/luc vector, measured by lymphocyte proliferation assay at 84–110 days following vector administration [30].

Bottom Line: Moreover, our results showed vector presence in type II alveolar cells.The vector did not induce significant cellular immune response.These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Anesthesiology and Critical Care Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, 91120, Israel. luminita25@yahoo.com

ABSTRACT

Background: Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS). Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40) vectors for pulmonary gene therapy.

Methods: Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP). SV40 vectors carrying the luciferase reporter gene (SV/luc) were administered intratracheally immediately after sepsis induction. Sham operated (SO) as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C). Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector.

Results: Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response.

Conclusion: In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.

Show MeSH
Related in: MedlinePlus