Limits...
IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts.

Rottman M, Soudais C, Vogt G, Renia L, Emile JF, Decaluwe H, Gaillard JL, Casanova JL - PLoS Med. (2008)

Bottom Line: Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection.High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages.These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM, U550, Paris, France.

ABSTRACT

Background: Interferon-gamma receptor 1 (IFN-gammaR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-gammaR1 deficiency.

Methods and findings: We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1+/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1-/- recipients. However, Ifngr1-/- mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-gammaR1-deficient humans, infected Ifngr1-/- mice displayed very high serum IFN-gamma levels before HSCT. The administration of a recombinant IFN-gamma-expressing AAV vector to Ifngr1-/- naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-gamma depletion in infected Ifngr1-/- mice in vivo allowed subsequent engraftment.

Conclusions: High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages. These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-gammaR1-deficient patients through IFN-gamma depletion from the blood. They further raise the possibility that depleting IFN-gamma may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor.

Show MeSH

Related in: MedlinePlus

The Depletion of Circulating IFN-γ Is Sufficient to Allow HSCT EngraftmentGroups of six Ifng−/− mice were infected with BCG and injected with a mixture of specific antibodies against IFN-γ and IL-12 or with a control isotype antibody. HSCT was carried out with bone marrow from Ifngr+/+ mice and serum IFN-γ levels were monitored over time (A). Data are plotted individually for each animal treated with specific antibodies (B) and control isotype antibodies (C). The percentage chimerism was evaluated and representative FACS analyses are shown for engraftment (D), corresponding to three animals with low serum levels of IFN-γ (left) and rejection, corresponding to six animals with high serum levels of IFN-γ (right).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2214797&req=5

pmed-0050026-g006: The Depletion of Circulating IFN-γ Is Sufficient to Allow HSCT EngraftmentGroups of six Ifng−/− mice were infected with BCG and injected with a mixture of specific antibodies against IFN-γ and IL-12 or with a control isotype antibody. HSCT was carried out with bone marrow from Ifngr+/+ mice and serum IFN-γ levels were monitored over time (A). Data are plotted individually for each animal treated with specific antibodies (B) and control isotype antibodies (C). The percentage chimerism was evaluated and representative FACS analyses are shown for engraftment (D), corresponding to three animals with low serum levels of IFN-γ (left) and rejection, corresponding to six animals with high serum levels of IFN-γ (right).

Mentions: High serum IFN-γ concentration at the time of HSCT has a deleterious effect on engraftment. We tried to determine whether blood depletion of IFN-γ could render HSCT of infected Ifngr1−/− mice successful. A first series of experiments was performed with anti-IFN-γ antibody alone. In these conditions IFN-γ depletion was not achieved. We thus refined our protocol: animals were infected with BCG and received four intraperitoneal doses of anti-IFN-γ plus anti-IL-12 antibodies at two-day intervals, starting from day 14, before transplantation on day 23. Another antibody injection was administered on the day after HSCT. IFN-γ depletion was monitored by blood sampling and HSCT was performed with mild conditioning, mimicking that used for human patients (Figure 6A). The injection of specific antibodies into infected Ifngr1−/− mice kept serum IFN-γ levels below 0.5 ng/ml before cell transfer (Figure 6B). The injection of isotype control antibodies resulted in a serum IFN-γ concentration of 1.2 ng/ml at the time of HSCT, and ranging from 3 ng/ml to 5 ng/ml thereafter (Figure 6C). In three of the six animals treated with specific antibodies, serum IFN-γ levels did not exceed 3 ng/ml in the first week after HSCT and even decreased to 0.1 ng/ml by nine weeks post-HSCT (Figure 6B). Three other animals behaved like the isotype control-treated group, with serum IFN-γ levels remaining high throughout the experiment. HSCT outcome was found to be strictly correlated with serum IFN-γ concentration. Chimerism with bone marrow was observed in the three animals in which serum IFN-γ concentrations remained low (Figure 6D, left). In contrast, the graft was rejected in the three animals in which serum IFN-γ levels were not controlled; no donor cells were found in such animals (Figure 6D, right). Moreover, bacterial disease was cured in the three animals in which HSCT was successful (unpublished data). Our data therefore demonstrate that efficient IFN-γ depletion by antibody administration improves engraftment in Ifngr1−/− mice.


IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts.

Rottman M, Soudais C, Vogt G, Renia L, Emile JF, Decaluwe H, Gaillard JL, Casanova JL - PLoS Med. (2008)

The Depletion of Circulating IFN-γ Is Sufficient to Allow HSCT EngraftmentGroups of six Ifng−/− mice were infected with BCG and injected with a mixture of specific antibodies against IFN-γ and IL-12 or with a control isotype antibody. HSCT was carried out with bone marrow from Ifngr+/+ mice and serum IFN-γ levels were monitored over time (A). Data are plotted individually for each animal treated with specific antibodies (B) and control isotype antibodies (C). The percentage chimerism was evaluated and representative FACS analyses are shown for engraftment (D), corresponding to three animals with low serum levels of IFN-γ (left) and rejection, corresponding to six animals with high serum levels of IFN-γ (right).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2214797&req=5

pmed-0050026-g006: The Depletion of Circulating IFN-γ Is Sufficient to Allow HSCT EngraftmentGroups of six Ifng−/− mice were infected with BCG and injected with a mixture of specific antibodies against IFN-γ and IL-12 or with a control isotype antibody. HSCT was carried out with bone marrow from Ifngr+/+ mice and serum IFN-γ levels were monitored over time (A). Data are plotted individually for each animal treated with specific antibodies (B) and control isotype antibodies (C). The percentage chimerism was evaluated and representative FACS analyses are shown for engraftment (D), corresponding to three animals with low serum levels of IFN-γ (left) and rejection, corresponding to six animals with high serum levels of IFN-γ (right).
Mentions: High serum IFN-γ concentration at the time of HSCT has a deleterious effect on engraftment. We tried to determine whether blood depletion of IFN-γ could render HSCT of infected Ifngr1−/− mice successful. A first series of experiments was performed with anti-IFN-γ antibody alone. In these conditions IFN-γ depletion was not achieved. We thus refined our protocol: animals were infected with BCG and received four intraperitoneal doses of anti-IFN-γ plus anti-IL-12 antibodies at two-day intervals, starting from day 14, before transplantation on day 23. Another antibody injection was administered on the day after HSCT. IFN-γ depletion was monitored by blood sampling and HSCT was performed with mild conditioning, mimicking that used for human patients (Figure 6A). The injection of specific antibodies into infected Ifngr1−/− mice kept serum IFN-γ levels below 0.5 ng/ml before cell transfer (Figure 6B). The injection of isotype control antibodies resulted in a serum IFN-γ concentration of 1.2 ng/ml at the time of HSCT, and ranging from 3 ng/ml to 5 ng/ml thereafter (Figure 6C). In three of the six animals treated with specific antibodies, serum IFN-γ levels did not exceed 3 ng/ml in the first week after HSCT and even decreased to 0.1 ng/ml by nine weeks post-HSCT (Figure 6B). Three other animals behaved like the isotype control-treated group, with serum IFN-γ levels remaining high throughout the experiment. HSCT outcome was found to be strictly correlated with serum IFN-γ concentration. Chimerism with bone marrow was observed in the three animals in which serum IFN-γ concentrations remained low (Figure 6D, left). In contrast, the graft was rejected in the three animals in which serum IFN-γ levels were not controlled; no donor cells were found in such animals (Figure 6D, right). Moreover, bacterial disease was cured in the three animals in which HSCT was successful (unpublished data). Our data therefore demonstrate that efficient IFN-γ depletion by antibody administration improves engraftment in Ifngr1−/− mice.

Bottom Line: Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection.High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages.These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM, U550, Paris, France.

ABSTRACT

Background: Interferon-gamma receptor 1 (IFN-gammaR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-gammaR1 deficiency.

Methods and findings: We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1+/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1-/- recipients. However, Ifngr1-/- mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-gammaR1-deficient humans, infected Ifngr1-/- mice displayed very high serum IFN-gamma levels before HSCT. The administration of a recombinant IFN-gamma-expressing AAV vector to Ifngr1-/- naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-gamma depletion in infected Ifngr1-/- mice in vivo allowed subsequent engraftment.

Conclusions: High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages. These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-gammaR1-deficient patients through IFN-gamma depletion from the blood. They further raise the possibility that depleting IFN-gamma may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor.

Show MeSH
Related in: MedlinePlus