Limits...
IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts.

Rottman M, Soudais C, Vogt G, Renia L, Emile JF, Decaluwe H, Gaillard JL, Casanova JL - PLoS Med. (2008)

Bottom Line: Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection.High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages.These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM, U550, Paris, France.

ABSTRACT

Background: Interferon-gamma receptor 1 (IFN-gammaR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-gammaR1 deficiency.

Methods and findings: We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1+/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1-/- recipients. However, Ifngr1-/- mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-gammaR1-deficient humans, infected Ifngr1-/- mice displayed very high serum IFN-gamma levels before HSCT. The administration of a recombinant IFN-gamma-expressing AAV vector to Ifngr1-/- naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-gamma depletion in infected Ifngr1-/- mice in vivo allowed subsequent engraftment.

Conclusions: High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages. These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-gammaR1-deficient patients through IFN-gamma depletion from the blood. They further raise the possibility that depleting IFN-gamma may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor.

Show MeSH

Related in: MedlinePlus

HSCT Graft Rejection Is Associated with High Serum IFN-γ Levels(A) IFN-γ levels were measured over time, in the serum of Ifngr1−/− and Ifngr+/+ mice, after BCG infection (five animals per group).(B) IFN-γ levels were measured after the HSCT treatment of Ifngr1−/− and Ifngr+/+ mice with either Ifngr1−/− or Ifngr+/+ bone marrow (five animals per group).(C) IFN-γ levels were measured in Ifngr1−/− and Ifngr+/+ mice treated by HSCT with Ifngr+/+ bone marrow, and infected with BCG before or after HSCT (five animals per group).(D) Northern blot analysis of Ifng and GAPDH mRNA levels in the spleens of Ifngr1−/− and Ifngr+/+ mice 30 d after BCG infection (three animals per group). Spleens were removed from animals, directly frozen in 1 ml of Trizol and stored at −80 °C for further preparation. Non-infected Ifngr1−/−, Ifngr+/+, and Ifng−/− mice were used as controls (two animals per group). Means of arbitrary values obtained after scanning were calculated and normalised with respect to the values obtained for GAPDH.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2214797&req=5

pmed-0050026-g004: HSCT Graft Rejection Is Associated with High Serum IFN-γ Levels(A) IFN-γ levels were measured over time, in the serum of Ifngr1−/− and Ifngr+/+ mice, after BCG infection (five animals per group).(B) IFN-γ levels were measured after the HSCT treatment of Ifngr1−/− and Ifngr+/+ mice with either Ifngr1−/− or Ifngr+/+ bone marrow (five animals per group).(C) IFN-γ levels were measured in Ifngr1−/− and Ifngr+/+ mice treated by HSCT with Ifngr+/+ bone marrow, and infected with BCG before or after HSCT (five animals per group).(D) Northern blot analysis of Ifng and GAPDH mRNA levels in the spleens of Ifngr1−/− and Ifngr+/+ mice 30 d after BCG infection (three animals per group). Spleens were removed from animals, directly frozen in 1 ml of Trizol and stored at −80 °C for further preparation. Non-infected Ifngr1−/−, Ifngr+/+, and Ifng−/− mice were used as controls (two animals per group). Means of arbitrary values obtained after scanning were calculated and normalised with respect to the values obtained for GAPDH.

Mentions: High serum IFN-γ concentration is a hallmark of human complete IFN-γR1 deficiency [35]. We thus monitored serum IFN-γ levels in BCG-infected Ifngr1−/− and Ifngr1+/+ mice. IFN-γ was detected as early as 10 d post-infection and its concentration gradually increased towards a plateau at about 6 ng/ml within six wk of infection in Ifngr1−/− mice, confirming previous observations [36]. IFN-γ remained barely detectable in infected Ifngr1+/+ mice (Figure 4A). Serum IFN-γ levels, determined 30 d after BCG infection in Ifngr1−/− and Ifngr1+/+ mice previously subjected to HSCT, were found to correlate with the control of BCG infection. IFN-γ levels were high in Ifngr1−/− animals engrafted with Ifngr1−/− bone marrow and only marginally elevated in Ifngr1+/+ animals engrafted with Ifngr1−/− bone marrow (Figure 4B). In these conditions IFN-γ levels were very similar to those in BCG-infected non-transplanted Ifngr1−/− mice (Figure 4A). IFN-γ was almost undetectable in both Ifngr1−/− mice engrafted with Ifngr1+/+ bone marrow and Ifngr1+/+ mice engrafted with Ifngr1+/+ bone marrow, as for non-transplanted Ifngr1+/+ animals (Figure 4B). Following HSCT with mild conditioning after M. bovis BCG infection, IFN-γ concentration seemed to be high only in the cohort of Ifngr1−/− animals infected at the time of cell transfer, and in such cases, HSCT was unsuccessful (Figures 3A and 4C). These results were confirmed by quantification of IFN-γ transcripts in the spleens of infected animals. Infected Ifngr1−/− mice contained significantly larger amounts of IFN-γ mRNA than infected Ifngr1+/+ animals (Figure 4D). Basal levels of IFN-γ were detected in non-infected Ifngr1−/− and Ifngr1+/+ mice. As expected, no IFN-γ mRNA was detected in Ifng−/− mice. The amounts of IFN-γ mRNA in infected Ifngr1−/− and Ifngr1+/+ mice differed by a factor of 2.25 (p ≤ 0.007). Thus, serum IFN-γ concentration increased with BCG infection and was inversely correlated with HSCT engraftment in the murine model of IFN-γR1 deficiency.


IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts.

Rottman M, Soudais C, Vogt G, Renia L, Emile JF, Decaluwe H, Gaillard JL, Casanova JL - PLoS Med. (2008)

HSCT Graft Rejection Is Associated with High Serum IFN-γ Levels(A) IFN-γ levels were measured over time, in the serum of Ifngr1−/− and Ifngr+/+ mice, after BCG infection (five animals per group).(B) IFN-γ levels were measured after the HSCT treatment of Ifngr1−/− and Ifngr+/+ mice with either Ifngr1−/− or Ifngr+/+ bone marrow (five animals per group).(C) IFN-γ levels were measured in Ifngr1−/− and Ifngr+/+ mice treated by HSCT with Ifngr+/+ bone marrow, and infected with BCG before or after HSCT (five animals per group).(D) Northern blot analysis of Ifng and GAPDH mRNA levels in the spleens of Ifngr1−/− and Ifngr+/+ mice 30 d after BCG infection (three animals per group). Spleens were removed from animals, directly frozen in 1 ml of Trizol and stored at −80 °C for further preparation. Non-infected Ifngr1−/−, Ifngr+/+, and Ifng−/− mice were used as controls (two animals per group). Means of arbitrary values obtained after scanning were calculated and normalised with respect to the values obtained for GAPDH.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2214797&req=5

pmed-0050026-g004: HSCT Graft Rejection Is Associated with High Serum IFN-γ Levels(A) IFN-γ levels were measured over time, in the serum of Ifngr1−/− and Ifngr+/+ mice, after BCG infection (five animals per group).(B) IFN-γ levels were measured after the HSCT treatment of Ifngr1−/− and Ifngr+/+ mice with either Ifngr1−/− or Ifngr+/+ bone marrow (five animals per group).(C) IFN-γ levels were measured in Ifngr1−/− and Ifngr+/+ mice treated by HSCT with Ifngr+/+ bone marrow, and infected with BCG before or after HSCT (five animals per group).(D) Northern blot analysis of Ifng and GAPDH mRNA levels in the spleens of Ifngr1−/− and Ifngr+/+ mice 30 d after BCG infection (three animals per group). Spleens were removed from animals, directly frozen in 1 ml of Trizol and stored at −80 °C for further preparation. Non-infected Ifngr1−/−, Ifngr+/+, and Ifng−/− mice were used as controls (two animals per group). Means of arbitrary values obtained after scanning were calculated and normalised with respect to the values obtained for GAPDH.
Mentions: High serum IFN-γ concentration is a hallmark of human complete IFN-γR1 deficiency [35]. We thus monitored serum IFN-γ levels in BCG-infected Ifngr1−/− and Ifngr1+/+ mice. IFN-γ was detected as early as 10 d post-infection and its concentration gradually increased towards a plateau at about 6 ng/ml within six wk of infection in Ifngr1−/− mice, confirming previous observations [36]. IFN-γ remained barely detectable in infected Ifngr1+/+ mice (Figure 4A). Serum IFN-γ levels, determined 30 d after BCG infection in Ifngr1−/− and Ifngr1+/+ mice previously subjected to HSCT, were found to correlate with the control of BCG infection. IFN-γ levels were high in Ifngr1−/− animals engrafted with Ifngr1−/− bone marrow and only marginally elevated in Ifngr1+/+ animals engrafted with Ifngr1−/− bone marrow (Figure 4B). In these conditions IFN-γ levels were very similar to those in BCG-infected non-transplanted Ifngr1−/− mice (Figure 4A). IFN-γ was almost undetectable in both Ifngr1−/− mice engrafted with Ifngr1+/+ bone marrow and Ifngr1+/+ mice engrafted with Ifngr1+/+ bone marrow, as for non-transplanted Ifngr1+/+ animals (Figure 4B). Following HSCT with mild conditioning after M. bovis BCG infection, IFN-γ concentration seemed to be high only in the cohort of Ifngr1−/− animals infected at the time of cell transfer, and in such cases, HSCT was unsuccessful (Figures 3A and 4C). These results were confirmed by quantification of IFN-γ transcripts in the spleens of infected animals. Infected Ifngr1−/− mice contained significantly larger amounts of IFN-γ mRNA than infected Ifngr1+/+ animals (Figure 4D). Basal levels of IFN-γ were detected in non-infected Ifngr1−/− and Ifngr1+/+ mice. As expected, no IFN-γ mRNA was detected in Ifng−/− mice. The amounts of IFN-γ mRNA in infected Ifngr1−/− and Ifngr1+/+ mice differed by a factor of 2.25 (p ≤ 0.007). Thus, serum IFN-γ concentration increased with BCG infection and was inversely correlated with HSCT engraftment in the murine model of IFN-γR1 deficiency.

Bottom Line: Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection.High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages.These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM, U550, Paris, France.

ABSTRACT

Background: Interferon-gamma receptor 1 (IFN-gammaR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-gammaR1 deficiency.

Methods and findings: We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1+/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1-/- recipients. However, Ifngr1-/- mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-gammaR1-deficient humans, infected Ifngr1-/- mice displayed very high serum IFN-gamma levels before HSCT. The administration of a recombinant IFN-gamma-expressing AAV vector to Ifngr1-/- naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-gamma depletion in infected Ifngr1-/- mice in vivo allowed subsequent engraftment.

Conclusions: High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages. These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-gammaR1-deficient patients through IFN-gamma depletion from the blood. They further raise the possibility that depleting IFN-gamma may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor.

Show MeSH
Related in: MedlinePlus