Limits...
IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts.

Rottman M, Soudais C, Vogt G, Renia L, Emile JF, Decaluwe H, Gaillard JL, Casanova JL - PLoS Med. (2008)

Bottom Line: Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection.High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages.These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM, U550, Paris, France.

ABSTRACT

Background: Interferon-gamma receptor 1 (IFN-gammaR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-gammaR1 deficiency.

Methods and findings: We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1+/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1-/- recipients. However, Ifngr1-/- mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-gammaR1-deficient humans, infected Ifngr1-/- mice displayed very high serum IFN-gamma levels before HSCT. The administration of a recombinant IFN-gamma-expressing AAV vector to Ifngr1-/- naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-gamma depletion in infected Ifngr1-/- mice in vivo allowed subsequent engraftment.

Conclusions: High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages. These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-gammaR1-deficient patients through IFN-gamma depletion from the blood. They further raise the possibility that depleting IFN-gamma may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor.

Show MeSH

Related in: MedlinePlus

HSCT Restores Anti-Mycobacterial Immunity in Ifngr1−/− Mice(A) Ifngr1−/− and Ifngr+/+ mice (five animals per group) expressing the Ly5.2 marker were subjected to HSCT with bone marrow from Ifngr+/+ mice expressing the Ly5.1 marker, after intense irradiation (1,200 rads). Chimerism, assessed by determining the surface expression of Ly5.1 and Ly5.2 on lymphocytes, and peripheral reconstitution, assessed by determining the surface expression of TCRαβ and B220 markers on lymphocytes, were analysed by flow cytometry nine weeks after HSCT treatment.(B) Ifngr1−/− and Ifngr+/+ mice were subjected to HSCT with bone marrow from Ifngr1−/− or Ifngr+/+ mice. HSCT-treated mice were then infected with BCG and bacterial loads were determined 45 d later (five animals per group).(C) Ifngr1−/− and Ifngr+/+ mice expressing the Ly5.2 marker were subjected to HSCT with bone marrow from Ifngr+/+ mice expressing the Ly5.1 marker, after mild irradiation (550 rads). Chimerism and peripheral reconstitution were analysed by flow cytometry nine weeks after HSCT treatment.(D) Ifngr1−/− and Ifngr+/+ mice were subjected to HSCT with bone marrow from Ifngr+/+ mice after intense or mild irradiation, infected with BCG and bacterial load was determined 45 d later.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2214797&req=5

pmed-0050026-g002: HSCT Restores Anti-Mycobacterial Immunity in Ifngr1−/− Mice(A) Ifngr1−/− and Ifngr+/+ mice (five animals per group) expressing the Ly5.2 marker were subjected to HSCT with bone marrow from Ifngr+/+ mice expressing the Ly5.1 marker, after intense irradiation (1,200 rads). Chimerism, assessed by determining the surface expression of Ly5.1 and Ly5.2 on lymphocytes, and peripheral reconstitution, assessed by determining the surface expression of TCRαβ and B220 markers on lymphocytes, were analysed by flow cytometry nine weeks after HSCT treatment.(B) Ifngr1−/− and Ifngr+/+ mice were subjected to HSCT with bone marrow from Ifngr1−/− or Ifngr+/+ mice. HSCT-treated mice were then infected with BCG and bacterial loads were determined 45 d later (five animals per group).(C) Ifngr1−/− and Ifngr+/+ mice expressing the Ly5.2 marker were subjected to HSCT with bone marrow from Ifngr+/+ mice expressing the Ly5.1 marker, after mild irradiation (550 rads). Chimerism and peripheral reconstitution were analysed by flow cytometry nine weeks after HSCT treatment.(D) Ifngr1−/− and Ifngr+/+ mice were subjected to HSCT with bone marrow from Ifngr+/+ mice after intense or mild irradiation, infected with BCG and bacterial load was determined 45 d later.

Mentions: We subjected C57BL/6 Ifngr1−/− mice to HSCT with sex- and age-matched syngenic C57BL/6 Ifngr1+/+ donors with an intensive total body irradiation conditioning regimen (1,200 rad). Several doses of bone marrow were tested and we found that 2 million cells was the dose most comparable to HSCT in humans. Leukocyte chimerism was complete, with low levels of residual autologous cells nine wk after treatment. Peripheral reconstitution was achieved, with the expected counts of lymphoid (T and B) and myeloid (macrophages and granulocytes) cells (Figure 2A, unpublished data). We then evaluated the ability of the recipient mice to control BCG infection. Ten weeks after HSCT, animals were challenged i.v. with 106 CFU of BCG. They were killed 45 d later and BCG load in the spleen was determined. Ifngr1−/− animals transplanted with Ifngr1−/− bone marrow were unable to control BCG infection, like Ifngr1+/+ animals receiving Ifngr1−/− bone marrow (Figure 2B). Ifngr1−/− animals receiving Ifngr1+/+ bone marrow controlled the infection as efficiently as Ifngr1+/+ mice receiving Ifngr1+/+ bone marrow or mice with no graft (Figure 2B). HSCT recipients conditioned with a milder regimen (550 rads) displayed mixed chimerism, with only about 50% donor Ly5.1 lymphocytes (Figure 2C). The donor haematopoietic compartment had nonetheless restored BCG growth control 45 d after infection (Figure 2D). Thus, the restoration of IFN-γR1 expression in the haematopoietic compartment alone, even in only a fraction of the compartment, is sufficient to confer resistance to BCG infection. Mycobacterial disease in mice with IFN-γR1 deficiency therefore results from the specific absence of IFN-γR1 in the haematopoietic compartment, consistent with reported data for HSCT in human patients [12,13].


IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts.

Rottman M, Soudais C, Vogt G, Renia L, Emile JF, Decaluwe H, Gaillard JL, Casanova JL - PLoS Med. (2008)

HSCT Restores Anti-Mycobacterial Immunity in Ifngr1−/− Mice(A) Ifngr1−/− and Ifngr+/+ mice (five animals per group) expressing the Ly5.2 marker were subjected to HSCT with bone marrow from Ifngr+/+ mice expressing the Ly5.1 marker, after intense irradiation (1,200 rads). Chimerism, assessed by determining the surface expression of Ly5.1 and Ly5.2 on lymphocytes, and peripheral reconstitution, assessed by determining the surface expression of TCRαβ and B220 markers on lymphocytes, were analysed by flow cytometry nine weeks after HSCT treatment.(B) Ifngr1−/− and Ifngr+/+ mice were subjected to HSCT with bone marrow from Ifngr1−/− or Ifngr+/+ mice. HSCT-treated mice were then infected with BCG and bacterial loads were determined 45 d later (five animals per group).(C) Ifngr1−/− and Ifngr+/+ mice expressing the Ly5.2 marker were subjected to HSCT with bone marrow from Ifngr+/+ mice expressing the Ly5.1 marker, after mild irradiation (550 rads). Chimerism and peripheral reconstitution were analysed by flow cytometry nine weeks after HSCT treatment.(D) Ifngr1−/− and Ifngr+/+ mice were subjected to HSCT with bone marrow from Ifngr+/+ mice after intense or mild irradiation, infected with BCG and bacterial load was determined 45 d later.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2214797&req=5

pmed-0050026-g002: HSCT Restores Anti-Mycobacterial Immunity in Ifngr1−/− Mice(A) Ifngr1−/− and Ifngr+/+ mice (five animals per group) expressing the Ly5.2 marker were subjected to HSCT with bone marrow from Ifngr+/+ mice expressing the Ly5.1 marker, after intense irradiation (1,200 rads). Chimerism, assessed by determining the surface expression of Ly5.1 and Ly5.2 on lymphocytes, and peripheral reconstitution, assessed by determining the surface expression of TCRαβ and B220 markers on lymphocytes, were analysed by flow cytometry nine weeks after HSCT treatment.(B) Ifngr1−/− and Ifngr+/+ mice were subjected to HSCT with bone marrow from Ifngr1−/− or Ifngr+/+ mice. HSCT-treated mice were then infected with BCG and bacterial loads were determined 45 d later (five animals per group).(C) Ifngr1−/− and Ifngr+/+ mice expressing the Ly5.2 marker were subjected to HSCT with bone marrow from Ifngr+/+ mice expressing the Ly5.1 marker, after mild irradiation (550 rads). Chimerism and peripheral reconstitution were analysed by flow cytometry nine weeks after HSCT treatment.(D) Ifngr1−/− and Ifngr+/+ mice were subjected to HSCT with bone marrow from Ifngr+/+ mice after intense or mild irradiation, infected with BCG and bacterial load was determined 45 d later.
Mentions: We subjected C57BL/6 Ifngr1−/− mice to HSCT with sex- and age-matched syngenic C57BL/6 Ifngr1+/+ donors with an intensive total body irradiation conditioning regimen (1,200 rad). Several doses of bone marrow were tested and we found that 2 million cells was the dose most comparable to HSCT in humans. Leukocyte chimerism was complete, with low levels of residual autologous cells nine wk after treatment. Peripheral reconstitution was achieved, with the expected counts of lymphoid (T and B) and myeloid (macrophages and granulocytes) cells (Figure 2A, unpublished data). We then evaluated the ability of the recipient mice to control BCG infection. Ten weeks after HSCT, animals were challenged i.v. with 106 CFU of BCG. They were killed 45 d later and BCG load in the spleen was determined. Ifngr1−/− animals transplanted with Ifngr1−/− bone marrow were unable to control BCG infection, like Ifngr1+/+ animals receiving Ifngr1−/− bone marrow (Figure 2B). Ifngr1−/− animals receiving Ifngr1+/+ bone marrow controlled the infection as efficiently as Ifngr1+/+ mice receiving Ifngr1+/+ bone marrow or mice with no graft (Figure 2B). HSCT recipients conditioned with a milder regimen (550 rads) displayed mixed chimerism, with only about 50% donor Ly5.1 lymphocytes (Figure 2C). The donor haematopoietic compartment had nonetheless restored BCG growth control 45 d after infection (Figure 2D). Thus, the restoration of IFN-γR1 expression in the haematopoietic compartment alone, even in only a fraction of the compartment, is sufficient to confer resistance to BCG infection. Mycobacterial disease in mice with IFN-γR1 deficiency therefore results from the specific absence of IFN-γR1 in the haematopoietic compartment, consistent with reported data for HSCT in human patients [12,13].

Bottom Line: Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection.High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages.These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM, U550, Paris, France.

ABSTRACT

Background: Interferon-gamma receptor 1 (IFN-gammaR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-gammaR1 deficiency.

Methods and findings: We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1+/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1-/- recipients. However, Ifngr1-/- mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-gammaR1-deficient humans, infected Ifngr1-/- mice displayed very high serum IFN-gamma levels before HSCT. The administration of a recombinant IFN-gamma-expressing AAV vector to Ifngr1-/- naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-gamma depletion in infected Ifngr1-/- mice in vivo allowed subsequent engraftment.

Conclusions: High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages. These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-gammaR1-deficient patients through IFN-gamma depletion from the blood. They further raise the possibility that depleting IFN-gamma may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor.

Show MeSH
Related in: MedlinePlus