Limits...
Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression in mammalian cells and mice.

Fluri DA, Baba MD, Fussenegger M - BMC Biotechnol. (2007)

Bottom Line: Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications.To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression.Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as in mice.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland. david.fluri@chem.ethz.ch

ABSTRACT

Background: Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV) type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features.

Results: We designed recombinant adeno-associated virus (rAAV) vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (EON and EOFF) into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7). Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for in vivo studies. To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression.

Conclusion: Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as in mice.

Show MeSH

Related in: MedlinePlus

Reversibility and adjustability of macrolide-responsive SEAP expression in HT-1080 and MCF-7 transduced by transgenic AAV type 2-derived particles. (A) HT-1080 and (B) MCF-7 were transduced with pDF143-derived AAV particles (2000 genomic particles/cell) and six equal populations (1–6) were cultivated in media containing different antibiotic concentrations. Cells were (i) cultivated in the presence (+++) or absence (---) of EM over 9 days, (ii) cultivated in the presence (++-) or absence (--+) of EM over 6 days and then incubated in reversed EM conditions for the remaining three days or (iii) cells were cultivated in medium whose EM status was alternated every three days +EM to --EM to +EM (+-+) or from --EM to +EM to --EM (-+-) and SEAP expression was quantified. Adjustability of SEAP expression of pDF143 (1000 genomic particles/cell) (C) and pDF51/77 (500 genomic particles/cell) (D) in HT-1080 and MCF-7 cultivated for 48 h in the presence of increasing EM concentrations. SEAP expression is shown in units/liter (U/l) as defined by Schlatter et al. [52]. Abbreviations: EM, erythromycin; SEAP, human placental secreted alkaline phosphatase. Abbreviations: EM, erythromycin; SEAP, human placental secreted alkaline phosphatase.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2211474&req=5

Figure 5: Reversibility and adjustability of macrolide-responsive SEAP expression in HT-1080 and MCF-7 transduced by transgenic AAV type 2-derived particles. (A) HT-1080 and (B) MCF-7 were transduced with pDF143-derived AAV particles (2000 genomic particles/cell) and six equal populations (1–6) were cultivated in media containing different antibiotic concentrations. Cells were (i) cultivated in the presence (+++) or absence (---) of EM over 9 days, (ii) cultivated in the presence (++-) or absence (--+) of EM over 6 days and then incubated in reversed EM conditions for the remaining three days or (iii) cells were cultivated in medium whose EM status was alternated every three days +EM to --EM to +EM (+-+) or from --EM to +EM to --EM (-+-) and SEAP expression was quantified. Adjustability of SEAP expression of pDF143 (1000 genomic particles/cell) (C) and pDF51/77 (500 genomic particles/cell) (D) in HT-1080 and MCF-7 cultivated for 48 h in the presence of increasing EM concentrations. SEAP expression is shown in units/liter (U/l) as defined by Schlatter et al. [52]. Abbreviations: EM, erythromycin; SEAP, human placental secreted alkaline phosphatase. Abbreviations: EM, erythromycin; SEAP, human placental secreted alkaline phosphatase.

Mentions: HT-1080 and MCF-7 showed excellent switching characteristics upon application of removal of erythromycin (Figure 5A and 5B)


Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression in mammalian cells and mice.

Fluri DA, Baba MD, Fussenegger M - BMC Biotechnol. (2007)

Reversibility and adjustability of macrolide-responsive SEAP expression in HT-1080 and MCF-7 transduced by transgenic AAV type 2-derived particles. (A) HT-1080 and (B) MCF-7 were transduced with pDF143-derived AAV particles (2000 genomic particles/cell) and six equal populations (1–6) were cultivated in media containing different antibiotic concentrations. Cells were (i) cultivated in the presence (+++) or absence (---) of EM over 9 days, (ii) cultivated in the presence (++-) or absence (--+) of EM over 6 days and then incubated in reversed EM conditions for the remaining three days or (iii) cells were cultivated in medium whose EM status was alternated every three days +EM to --EM to +EM (+-+) or from --EM to +EM to --EM (-+-) and SEAP expression was quantified. Adjustability of SEAP expression of pDF143 (1000 genomic particles/cell) (C) and pDF51/77 (500 genomic particles/cell) (D) in HT-1080 and MCF-7 cultivated for 48 h in the presence of increasing EM concentrations. SEAP expression is shown in units/liter (U/l) as defined by Schlatter et al. [52]. Abbreviations: EM, erythromycin; SEAP, human placental secreted alkaline phosphatase. Abbreviations: EM, erythromycin; SEAP, human placental secreted alkaline phosphatase.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2211474&req=5

Figure 5: Reversibility and adjustability of macrolide-responsive SEAP expression in HT-1080 and MCF-7 transduced by transgenic AAV type 2-derived particles. (A) HT-1080 and (B) MCF-7 were transduced with pDF143-derived AAV particles (2000 genomic particles/cell) and six equal populations (1–6) were cultivated in media containing different antibiotic concentrations. Cells were (i) cultivated in the presence (+++) or absence (---) of EM over 9 days, (ii) cultivated in the presence (++-) or absence (--+) of EM over 6 days and then incubated in reversed EM conditions for the remaining three days or (iii) cells were cultivated in medium whose EM status was alternated every three days +EM to --EM to +EM (+-+) or from --EM to +EM to --EM (-+-) and SEAP expression was quantified. Adjustability of SEAP expression of pDF143 (1000 genomic particles/cell) (C) and pDF51/77 (500 genomic particles/cell) (D) in HT-1080 and MCF-7 cultivated for 48 h in the presence of increasing EM concentrations. SEAP expression is shown in units/liter (U/l) as defined by Schlatter et al. [52]. Abbreviations: EM, erythromycin; SEAP, human placental secreted alkaline phosphatase. Abbreviations: EM, erythromycin; SEAP, human placental secreted alkaline phosphatase.
Mentions: HT-1080 and MCF-7 showed excellent switching characteristics upon application of removal of erythromycin (Figure 5A and 5B)

Bottom Line: Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications.To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression.Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as in mice.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland. david.fluri@chem.ethz.ch

ABSTRACT

Background: Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV) type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features.

Results: We designed recombinant adeno-associated virus (rAAV) vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (EON and EOFF) into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7). Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for in vivo studies. To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression.

Conclusion: Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as in mice.

Show MeSH
Related in: MedlinePlus