Limits...
Microbial sulfate reduction and metal attenuation in pH 4 acid mine water.

Church CD, Wilkin RT, Alpers CN, Rye RO, McCleskey RB - Geochem. Trans. (2007)

Bottom Line: Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates.Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria.DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.

View Article: PubMed Central - HTML - PubMed

Affiliation: US Geological Survey, California Water Science Center, 4165 Spruance Road, San Diego, CA 92101, USA. clinton.church@ars.usda.gov

ABSTRACT
Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 per thousand heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.

No MeSH data available.


DGGE gel image of 16S rDNA fragments from Penn Mine sediments with five bands labeled (Table 3, sample collected November 2001).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2211471&req=5

Figure 3: DGGE gel image of 16S rDNA fragments from Penn Mine sediments with five bands labeled (Table 3, sample collected November 2001).

Mentions: Denaturing gradient gel electrophoresis (DGGE) analysis was used to determine the dominant bacteria in a sample from the Penn Mine (Figure 3 and Table 3). The bacterial profile for Penn Mine sediment contained five bands that were excised and sequenced. Bands A, B, and C were all associated with bacteria within the Clostridia group (Figure 3, Table 3). Specifically, bands A and B were associated with the Gram-positive, metal-reducing bacteria Desulfosporosinus and Desulfitobacterium. Members of the genus Desulfosporosinus are spore-forming, sulfate-reducing bacteria that have been found in gasoline-contaminated ground water [64] and in low pH sulfidogenic reactor systems [14]. Desulfitobacterium are anaerobic bacteria that have been shown to reductively dechlorinate perchloroethylene, trichloroethylene, and chlorophenol compounds. Desulfitobacterium species have also been shown to reduce sulfite, thiosulfate, and sulfur to sulfide, as well as reducing nitrate to nitrite [65]. The sequence obtained from band C aligned with an unidentified eubacterium clone BSV24, which was also affiliated with the Clostridia group [66].


Microbial sulfate reduction and metal attenuation in pH 4 acid mine water.

Church CD, Wilkin RT, Alpers CN, Rye RO, McCleskey RB - Geochem. Trans. (2007)

DGGE gel image of 16S rDNA fragments from Penn Mine sediments with five bands labeled (Table 3, sample collected November 2001).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2211471&req=5

Figure 3: DGGE gel image of 16S rDNA fragments from Penn Mine sediments with five bands labeled (Table 3, sample collected November 2001).
Mentions: Denaturing gradient gel electrophoresis (DGGE) analysis was used to determine the dominant bacteria in a sample from the Penn Mine (Figure 3 and Table 3). The bacterial profile for Penn Mine sediment contained five bands that were excised and sequenced. Bands A, B, and C were all associated with bacteria within the Clostridia group (Figure 3, Table 3). Specifically, bands A and B were associated with the Gram-positive, metal-reducing bacteria Desulfosporosinus and Desulfitobacterium. Members of the genus Desulfosporosinus are spore-forming, sulfate-reducing bacteria that have been found in gasoline-contaminated ground water [64] and in low pH sulfidogenic reactor systems [14]. Desulfitobacterium are anaerobic bacteria that have been shown to reductively dechlorinate perchloroethylene, trichloroethylene, and chlorophenol compounds. Desulfitobacterium species have also been shown to reduce sulfite, thiosulfate, and sulfur to sulfide, as well as reducing nitrate to nitrite [65]. The sequence obtained from band C aligned with an unidentified eubacterium clone BSV24, which was also affiliated with the Clostridia group [66].

Bottom Line: Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates.Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria.DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.

View Article: PubMed Central - HTML - PubMed

Affiliation: US Geological Survey, California Water Science Center, 4165 Spruance Road, San Diego, CA 92101, USA. clinton.church@ars.usda.gov

ABSTRACT
Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 per thousand heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.

No MeSH data available.