Limits...
Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality.

Mocarelli P, Gerthoux PM, Patterson DG, Milani S, Limonta G, Bertona M, Signorini S, Tramacere P, Colombo L, Crespi C, Brambilla P, Sarto C, Carreri V, Sampson EJ, Turner WE, Needham LL - Environ. Health Perspect. (2008)

Bottom Line: Relative to comparisons, 71 men (mean age at exposure, 6.2 years; median serum TCDD, 210 ppt) at 22-31 years of age showed reductions in sperm concentration (53.6 vs. 72.5 million/mL; p = 0.025); percent progressive motility (33.2% vs. 40.8%; p < 0.001); total motile sperm count (44.2 vs. 77.5 x 10(6); p = 0.018); estradiol (76.2 vs. 95.9 pmol/L; p = 0.001); and an increase in follicle-stimulating hormone (FSH; 3.58 vs. 2.98 IU/L; p = 0.055).Forty-four men (mean age at exposure, 13.2 years; median serum TCDD, 164 ppt) at 32-39 years of age showed increased total sperm count (272 vs. 191.9 x 10(6); p = 0.042), total motile sperm count (105 vs. 64.9 x10(6); p = 0.036), FSH (4.1 vs. 3.2 UI/L; p = 0.038), and reduced estradiol (74.4 vs. 92.9 pmol/L; p < 0.001).Exposure to TCDD in infancy reduces sperm concentration and motility, and an opposite effect is seen with exposure during puberty.

View Article: PubMed Central - PubMed

Affiliation: University Department of Laboratory Medicine, Hospital of Desio, Milano, Italy. mocarelli@uds.unimib.it

ABSTRACT

Background: Environmental toxicants are allegedly involved in decreasing semen quality in recent decades; however, definitive proof is not yet available. In 1976 an accident exposed residents in Seveso, Italy, to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

Objective: The purpose of this study was to investigate reproductive hormones and sperm quality in exposed males.

Methods: We studied 135 males exposed to TCDD at three age groups, infancy/prepuberty (1-9 years), puberty (10-17 years), and adulthood (18-26 years), and 184 healthy male comparisons using 1976 serum TCDD levels and semen quality and reproductive hormones from samples collected 22 years later.

Results: Relative to comparisons, 71 men (mean age at exposure, 6.2 years; median serum TCDD, 210 ppt) at 22-31 years of age showed reductions in sperm concentration (53.6 vs. 72.5 million/mL; p = 0.025); percent progressive motility (33.2% vs. 40.8%; p < 0.001); total motile sperm count (44.2 vs. 77.5 x 10(6); p = 0.018); estradiol (76.2 vs. 95.9 pmol/L; p = 0.001); and an increase in follicle-stimulating hormone (FSH; 3.58 vs. 2.98 IU/L; p = 0.055). Forty-four men (mean age at exposure, 13.2 years; median serum TCDD, 164 ppt) at 32-39 years of age showed increased total sperm count (272 vs. 191.9 x 10(6); p = 0.042), total motile sperm count (105 vs. 64.9 x10(6); p = 0.036), FSH (4.1 vs. 3.2 UI/L; p = 0.038), and reduced estradiol (74.4 vs. 92.9 pmol/L; p < 0.001). No effects were observed in 20 men, 40-47 years of age, who were exposed to TCDD (median, 123 ppt) as adults (mean age at exposure, 21.5 years).

Conclusions: Exposure to TCDD in infancy reduces sperm concentration and motility, and an opposite effect is seen with exposure during puberty. Exposure in either period leads to permanent reduction of estradiol and increased FSH. These effects are permanent and occur at TCDD concentrations < 68 ppt, which is within one order of magnitude of those in the industrialized world in the 1970s and 1980s and may be responsible at least in part for the reported decrease in sperm quality, especially in younger men.

Show MeSH

Related in: MedlinePlus

TCDD quartile distribution (adjusted mean and 95% confidence interval) of sperm concentration (A, B), total motile sperm count (C, D), and serum E2 (E, F) for exposed men and of same-age comparison groups [A,C,E; men who were 1–9 years of age in 1976 (22–31 years of age in 1998); B,D,F; men who were 10–17 years of age in 1976 (32–39 years of age in 1998). Median concentrations of TCDD quartiles (shown in parentheses) are expressed as parts per trillion on a serum lipid basis in 1976.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2199303&req=5

f3-ehp0116-000070: TCDD quartile distribution (adjusted mean and 95% confidence interval) of sperm concentration (A, B), total motile sperm count (C, D), and serum E2 (E, F) for exposed men and of same-age comparison groups [A,C,E; men who were 1–9 years of age in 1976 (22–31 years of age in 1998); B,D,F; men who were 10–17 years of age in 1976 (32–39 years of age in 1998). Median concentrations of TCDD quartiles (shown in parentheses) are expressed as parts per trillion on a serum lipid basis in 1976.

Mentions: In 71 men exposed at 1–9 years of age (mean, 6.2 years), serum TCDD concentrations (median, 210 ppt) had a significant effect on semen quality measured 22 years later. Indeed, significant decreases in sperm count (p = 0.025), progressive sperm motility (p = 0.001), and total number of motile sperm (p = 0.01) were observed relative to the comparison group (Table 2). Quartile distribution (Figure 3A, 3C) shows that serum TCDD concentrations ≤ 113 ppt (median of first quartile, 68 ppt) adversely affected sperm concentration and total motile sperm count.


Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality.

Mocarelli P, Gerthoux PM, Patterson DG, Milani S, Limonta G, Bertona M, Signorini S, Tramacere P, Colombo L, Crespi C, Brambilla P, Sarto C, Carreri V, Sampson EJ, Turner WE, Needham LL - Environ. Health Perspect. (2008)

TCDD quartile distribution (adjusted mean and 95% confidence interval) of sperm concentration (A, B), total motile sperm count (C, D), and serum E2 (E, F) for exposed men and of same-age comparison groups [A,C,E; men who were 1–9 years of age in 1976 (22–31 years of age in 1998); B,D,F; men who were 10–17 years of age in 1976 (32–39 years of age in 1998). Median concentrations of TCDD quartiles (shown in parentheses) are expressed as parts per trillion on a serum lipid basis in 1976.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2199303&req=5

f3-ehp0116-000070: TCDD quartile distribution (adjusted mean and 95% confidence interval) of sperm concentration (A, B), total motile sperm count (C, D), and serum E2 (E, F) for exposed men and of same-age comparison groups [A,C,E; men who were 1–9 years of age in 1976 (22–31 years of age in 1998); B,D,F; men who were 10–17 years of age in 1976 (32–39 years of age in 1998). Median concentrations of TCDD quartiles (shown in parentheses) are expressed as parts per trillion on a serum lipid basis in 1976.
Mentions: In 71 men exposed at 1–9 years of age (mean, 6.2 years), serum TCDD concentrations (median, 210 ppt) had a significant effect on semen quality measured 22 years later. Indeed, significant decreases in sperm count (p = 0.025), progressive sperm motility (p = 0.001), and total number of motile sperm (p = 0.01) were observed relative to the comparison group (Table 2). Quartile distribution (Figure 3A, 3C) shows that serum TCDD concentrations ≤ 113 ppt (median of first quartile, 68 ppt) adversely affected sperm concentration and total motile sperm count.

Bottom Line: Relative to comparisons, 71 men (mean age at exposure, 6.2 years; median serum TCDD, 210 ppt) at 22-31 years of age showed reductions in sperm concentration (53.6 vs. 72.5 million/mL; p = 0.025); percent progressive motility (33.2% vs. 40.8%; p < 0.001); total motile sperm count (44.2 vs. 77.5 x 10(6); p = 0.018); estradiol (76.2 vs. 95.9 pmol/L; p = 0.001); and an increase in follicle-stimulating hormone (FSH; 3.58 vs. 2.98 IU/L; p = 0.055).Forty-four men (mean age at exposure, 13.2 years; median serum TCDD, 164 ppt) at 32-39 years of age showed increased total sperm count (272 vs. 191.9 x 10(6); p = 0.042), total motile sperm count (105 vs. 64.9 x10(6); p = 0.036), FSH (4.1 vs. 3.2 UI/L; p = 0.038), and reduced estradiol (74.4 vs. 92.9 pmol/L; p < 0.001).Exposure to TCDD in infancy reduces sperm concentration and motility, and an opposite effect is seen with exposure during puberty.

View Article: PubMed Central - PubMed

Affiliation: University Department of Laboratory Medicine, Hospital of Desio, Milano, Italy. mocarelli@uds.unimib.it

ABSTRACT

Background: Environmental toxicants are allegedly involved in decreasing semen quality in recent decades; however, definitive proof is not yet available. In 1976 an accident exposed residents in Seveso, Italy, to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

Objective: The purpose of this study was to investigate reproductive hormones and sperm quality in exposed males.

Methods: We studied 135 males exposed to TCDD at three age groups, infancy/prepuberty (1-9 years), puberty (10-17 years), and adulthood (18-26 years), and 184 healthy male comparisons using 1976 serum TCDD levels and semen quality and reproductive hormones from samples collected 22 years later.

Results: Relative to comparisons, 71 men (mean age at exposure, 6.2 years; median serum TCDD, 210 ppt) at 22-31 years of age showed reductions in sperm concentration (53.6 vs. 72.5 million/mL; p = 0.025); percent progressive motility (33.2% vs. 40.8%; p < 0.001); total motile sperm count (44.2 vs. 77.5 x 10(6); p = 0.018); estradiol (76.2 vs. 95.9 pmol/L; p = 0.001); and an increase in follicle-stimulating hormone (FSH; 3.58 vs. 2.98 IU/L; p = 0.055). Forty-four men (mean age at exposure, 13.2 years; median serum TCDD, 164 ppt) at 32-39 years of age showed increased total sperm count (272 vs. 191.9 x 10(6); p = 0.042), total motile sperm count (105 vs. 64.9 x10(6); p = 0.036), FSH (4.1 vs. 3.2 UI/L; p = 0.038), and reduced estradiol (74.4 vs. 92.9 pmol/L; p < 0.001). No effects were observed in 20 men, 40-47 years of age, who were exposed to TCDD (median, 123 ppt) as adults (mean age at exposure, 21.5 years).

Conclusions: Exposure to TCDD in infancy reduces sperm concentration and motility, and an opposite effect is seen with exposure during puberty. Exposure in either period leads to permanent reduction of estradiol and increased FSH. These effects are permanent and occur at TCDD concentrations < 68 ppt, which is within one order of magnitude of those in the industrialized world in the 1970s and 1980s and may be responsible at least in part for the reported decrease in sperm quality, especially in younger men.

Show MeSH
Related in: MedlinePlus