Limits...
YHR150w and YDR479c encode peroxisomal integral membrane proteins involved in the regulation of peroxisome number, size, and distribution in Saccharomyces cerevisiae.

Vizeacoumar FJ, Torres-Guzman JC, Tam YY, Aitchison JD, Rachubinski RA - J. Cell Biol. (2003)

Bottom Line: Peroxisomes isolated from cells deleted for both genes have a decreased buoyant density compared with peroxisomes isolated from wild-type cells and still exhibit clustering and peroxisomal membrane thickening.Together, our data suggest a role for Yhr150p and Ydr479p, together with Pex25p and Vps1p, in regulating peroxisome number, size, and distribution in S. cerevisiae.Because of their role in peroxisome dynamics, YHR150w and YDR479c have been designated as PEX28 and PEX29, respectively, and their encoded peroxins as Pex28p and Pex29p.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell Biology, University of Alberta, Medical Sciences Building 5-14, Edmonton, Alberta T6G 2H7, Canada.

ABSTRACT
The peroxin Pex24p of the yeast Yarrowia lipolytica exhibits high sequence similarity to two hypothetical proteins, Yhr150p and Ydr479p, encoded by the Saccharomyces cerevisiae genome. Like YlPex24p, both Yhr150p and Ydr479p have been shown to be integral to the peroxisomal membrane, but unlike YlPex24p, their levels of synthesis are not increased upon a shift of cells from glucose- to oleic acid-containing medium. Peroxisomes of cells deleted for either or both of the YHR150w and YDR479c genes are increased in number, exhibit extensive clustering, are smaller in area than peroxisomes of wild-type cells, and often exhibit membrane thickening between adjacent peroxisomes in a cluster. Peroxisomes isolated from cells deleted for both genes have a decreased buoyant density compared with peroxisomes isolated from wild-type cells and still exhibit clustering and peroxisomal membrane thickening. Overexpression of the genes PEX25 or VPS1, but not the gene PEX11, restored the wild-type phenotype to cells deleted for one or both of the YHR150w and YDR479c genes. Together, our data suggest a role for Yhr150p and Ydr479p, together with Pex25p and Vps1p, in regulating peroxisome number, size, and distribution in S. cerevisiae. Because of their role in peroxisome dynamics, YHR150w and YDR479c have been designated as PEX28 and PEX29, respectively, and their encoded peroxins as Pex28p and Pex29p.

Show MeSH
Sequence alignment of Yarrowia lipolytica Pex24p with the proteins Yhr150p and Ydr479p encoded by the Saccharomyces cerevisiae genome. Amino acid sequences were aligned with the use of the ClustalW program (EMBL European Bioinformatics Institute, http://www.ebi.ac.uk/clustalw/). Identical residues (black) and similar residues (gray) in at least two of the proteins are shaded. Similarity rules: G = A = S; A = V; V = I = L = M; I = L = M = F = Y = W; K = R = H; D = E = Q = N; and S = T = Q = N. Dashes represent gaps.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2172915&req=5

fig1: Sequence alignment of Yarrowia lipolytica Pex24p with the proteins Yhr150p and Ydr479p encoded by the Saccharomyces cerevisiae genome. Amino acid sequences were aligned with the use of the ClustalW program (EMBL European Bioinformatics Institute, http://www.ebi.ac.uk/clustalw/). Identical residues (black) and similar residues (gray) in at least two of the proteins are shaded. Similarity rules: G = A = S; A = V; V = I = L = M; I = L = M = F = Y = W; K = R = H; D = E = Q = N; and S = T = Q = N. Dashes represent gaps.

Mentions: YlPex24p is an integral peroxisomal membrane protein that has been shown to be required for peroxisome assembly in the yeast Y. lipolytica (Tam and Rachubinski, 2002). A search of protein databases with the GENEINFO(R) BLAST Network Service of the National Center for Biotechnology Information revealed two proteins encoded by the ORFs YHR150w and YDR479c of the S. cerevisiae genome that exhibit extensive sequence similarity to YlPex24p (Fig. 1) . YlPex24p and Yhr150p exhibit 21.1% amino acid identity and 44.4% amino acid similarity, YlPex24p and Ydr479p exhibit 20.8% amino acid identity and 42.1% amino acid similarity, while Yhr150p and Ydr479p exhibit 20.4% amino acid identity and 41.3% amino acid similarity. Yhr150p is predicted to be a protein of molecular weight 66,145 and to have two transmembrane helices at amino acids 246–268 and 393–415 (http://www.cbs.dtu.dk/services/TMHMM-2.0/) (Krogh et al., 2001). Ydr479p is predicted to be a protein of molecular weight 63,533 and to have four transmembrane helices at amino acids 146–165, 172–194, 265–284, and 291–308. Some potential functional redundancy between Yhr150p and Ydr479p may have prevented them from being identified as being involved in peroxisome assembly in S. cerevisiae by procedures involving random mutagenesis and negative selection for growth of yeast on oleic acid–containing medium.


YHR150w and YDR479c encode peroxisomal integral membrane proteins involved in the regulation of peroxisome number, size, and distribution in Saccharomyces cerevisiae.

Vizeacoumar FJ, Torres-Guzman JC, Tam YY, Aitchison JD, Rachubinski RA - J. Cell Biol. (2003)

Sequence alignment of Yarrowia lipolytica Pex24p with the proteins Yhr150p and Ydr479p encoded by the Saccharomyces cerevisiae genome. Amino acid sequences were aligned with the use of the ClustalW program (EMBL European Bioinformatics Institute, http://www.ebi.ac.uk/clustalw/). Identical residues (black) and similar residues (gray) in at least two of the proteins are shaded. Similarity rules: G = A = S; A = V; V = I = L = M; I = L = M = F = Y = W; K = R = H; D = E = Q = N; and S = T = Q = N. Dashes represent gaps.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2172915&req=5

fig1: Sequence alignment of Yarrowia lipolytica Pex24p with the proteins Yhr150p and Ydr479p encoded by the Saccharomyces cerevisiae genome. Amino acid sequences were aligned with the use of the ClustalW program (EMBL European Bioinformatics Institute, http://www.ebi.ac.uk/clustalw/). Identical residues (black) and similar residues (gray) in at least two of the proteins are shaded. Similarity rules: G = A = S; A = V; V = I = L = M; I = L = M = F = Y = W; K = R = H; D = E = Q = N; and S = T = Q = N. Dashes represent gaps.
Mentions: YlPex24p is an integral peroxisomal membrane protein that has been shown to be required for peroxisome assembly in the yeast Y. lipolytica (Tam and Rachubinski, 2002). A search of protein databases with the GENEINFO(R) BLAST Network Service of the National Center for Biotechnology Information revealed two proteins encoded by the ORFs YHR150w and YDR479c of the S. cerevisiae genome that exhibit extensive sequence similarity to YlPex24p (Fig. 1) . YlPex24p and Yhr150p exhibit 21.1% amino acid identity and 44.4% amino acid similarity, YlPex24p and Ydr479p exhibit 20.8% amino acid identity and 42.1% amino acid similarity, while Yhr150p and Ydr479p exhibit 20.4% amino acid identity and 41.3% amino acid similarity. Yhr150p is predicted to be a protein of molecular weight 66,145 and to have two transmembrane helices at amino acids 246–268 and 393–415 (http://www.cbs.dtu.dk/services/TMHMM-2.0/) (Krogh et al., 2001). Ydr479p is predicted to be a protein of molecular weight 63,533 and to have four transmembrane helices at amino acids 146–165, 172–194, 265–284, and 291–308. Some potential functional redundancy between Yhr150p and Ydr479p may have prevented them from being identified as being involved in peroxisome assembly in S. cerevisiae by procedures involving random mutagenesis and negative selection for growth of yeast on oleic acid–containing medium.

Bottom Line: Peroxisomes isolated from cells deleted for both genes have a decreased buoyant density compared with peroxisomes isolated from wild-type cells and still exhibit clustering and peroxisomal membrane thickening.Together, our data suggest a role for Yhr150p and Ydr479p, together with Pex25p and Vps1p, in regulating peroxisome number, size, and distribution in S. cerevisiae.Because of their role in peroxisome dynamics, YHR150w and YDR479c have been designated as PEX28 and PEX29, respectively, and their encoded peroxins as Pex28p and Pex29p.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell Biology, University of Alberta, Medical Sciences Building 5-14, Edmonton, Alberta T6G 2H7, Canada.

ABSTRACT
The peroxin Pex24p of the yeast Yarrowia lipolytica exhibits high sequence similarity to two hypothetical proteins, Yhr150p and Ydr479p, encoded by the Saccharomyces cerevisiae genome. Like YlPex24p, both Yhr150p and Ydr479p have been shown to be integral to the peroxisomal membrane, but unlike YlPex24p, their levels of synthesis are not increased upon a shift of cells from glucose- to oleic acid-containing medium. Peroxisomes of cells deleted for either or both of the YHR150w and YDR479c genes are increased in number, exhibit extensive clustering, are smaller in area than peroxisomes of wild-type cells, and often exhibit membrane thickening between adjacent peroxisomes in a cluster. Peroxisomes isolated from cells deleted for both genes have a decreased buoyant density compared with peroxisomes isolated from wild-type cells and still exhibit clustering and peroxisomal membrane thickening. Overexpression of the genes PEX25 or VPS1, but not the gene PEX11, restored the wild-type phenotype to cells deleted for one or both of the YHR150w and YDR479c genes. Together, our data suggest a role for Yhr150p and Ydr479p, together with Pex25p and Vps1p, in regulating peroxisome number, size, and distribution in S. cerevisiae. Because of their role in peroxisome dynamics, YHR150w and YDR479c have been designated as PEX28 and PEX29, respectively, and their encoded peroxins as Pex28p and Pex29p.

Show MeSH