Limits...
Regulation of the expression and processing of caspase-12.

Kalai M, Lamkanfi M, Denecker G, Boogmans M, Lippens S, Meeus A, Declercq W, Vandenabeele P - J. Cell Biol. (2003)

Bottom Line: The effect is increased further when IFN-gamma is combined with TNF, lipopolysaccharide (LPS), or dsRNA.Transient overexpression of full-length caspase-12 leads to proteolytic processing of the enzyme and apoptosis.Similar processing occurs in TNF-, LPS-, Fas ligand-, and thapsigargin (Tg)-induced apoptosis.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Biomedical Research, Unit of Molecular Signalling and Cell Death, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium.

ABSTRACT
Phylogenetic analysis clusters caspase-12 with the inflammatory caspases 1 and 11. We analyzed the expression of caspase-12 in mouse embryos, adult organs, and different cell types and tested the effect of interferons (IFNs) and other proinflammatory stimuli. Constitutive expression of the caspase-12 protein was restricted to certain cell types, such as epithelial cells, primary fibroblasts, and L929 fibrosarcoma cells. In fibroblasts and B16/B16 melanoma cells, caspase-12 expression is stimulated by IFN-gamma but not by IFN-alpha or -beta. The effect is increased further when IFN-gamma is combined with TNF, lipopolysaccharide (LPS), or dsRNA. These stimuli also induce caspase-1 and -11 but inhibit the expression of caspase-3 and -9. In contrast to caspase-1 and -11, no caspase-12 protein was detected in macrophages in any of these treatments. Transient overexpression of full-length caspase-12 leads to proteolytic processing of the enzyme and apoptosis. Similar processing occurs in TNF-, LPS-, Fas ligand-, and thapsigargin (Tg)-induced apoptosis. However, B16/B16 melanoma cells die when treated with the ER stress-inducing agent Tg whether they express caspase-12 or not.

Show MeSH

Related in: MedlinePlus

Differential gene expression patterns of the mouse inflammatory caspase subfamily. Single-stranded cDNAs from multiple mouse tissues (panel I and II) were amplified by PCR using primers specific for caspase-1, -11, or -12. PCR for glyceraldehyde-3-phosphate dehydrogenase (G3DPH) was performed to ensure that an equal quality and quantity of cDNA was used. Negative (−) and positive (+) PCR controls (CTRL) lacking or containing the specific cDNAs, respectively. (A) Expression of caspase-1, -11, and -12 mRNA during mouse embryonic development. (B) Expression of caspase-1, -11, and -12 mRNA in different mouse organs.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2172698&req=5

fig1: Differential gene expression patterns of the mouse inflammatory caspase subfamily. Single-stranded cDNAs from multiple mouse tissues (panel I and II) were amplified by PCR using primers specific for caspase-1, -11, or -12. PCR for glyceraldehyde-3-phosphate dehydrogenase (G3DPH) was performed to ensure that an equal quality and quantity of cDNA was used. Negative (−) and positive (+) PCR controls (CTRL) lacking or containing the specific cDNAs, respectively. (A) Expression of caspase-1, -11, and -12 mRNA during mouse embryonic development. (B) Expression of caspase-1, -11, and -12 mRNA in different mouse organs.

Mentions: A previous analysis of the expression pattern of caspase-12 in newborn mouse organs demonstrated that the enzyme is found in many tissues and suggested that the protein is widely expressed in a variety of cells (Nakagawa and Yuan, 2000). However, the Northern blot analysis presented in our previous report demonstrated that the mRNA of caspase-12 is mainly expressed in the lungs and skeletal muscle (Van de Craen et al., 1997). In an attempt to resolve this apparent discrepancy, we analyzed the expression pattern of caspase-12 by RT-PCR during embryonic development and in different adult mouse organs and by Western blotting in different cell lines (Figs. 1 and 2). As caspase-12 is most similar to caspase-1 and -11, we compared the constitutive expression pattern of these three caspases. The mRNAs of the three proteins were highly expressed at day 7 of embryonic development. All three caspases showed a drop in expression at day 11, but whereas the mRNA of caspase-1 disappeared by day 17, the expression levels of caspase-11 and -12 mRNAs increased gradually and reached the initial levels again by that day (Fig. 1 A). The highest level of caspase-12 mRNA expression in adult mouse organs was observed in lymph node, lung, and spleen (Fig. 1 B), confirming our previous results (Van de Craen et al., 1997). The lowest caspase-12 mRNA expression levels were detected in brain, bone marrow, eye, and liver (Fig. 1 B). Interestingly, a double band appeared, for example, in the testis, suggesting the existence of a splice variant. Indeed, splice variants of murine caspase-12 and human pseudo caspase-12 were reported before (Van de Craen et al., 1997; Fischer et al., 2002). Caspase-11 mRNA was observed in all analyzed organs, though the expression levels in the lung, spleen, uterus, and smooth muscle were clearly the highest (Fig. 1 B). Caspase-1 mRNA expression was detected in all of the organs, with the lowest level in the liver and the kidney and the highest in the spleen.


Regulation of the expression and processing of caspase-12.

Kalai M, Lamkanfi M, Denecker G, Boogmans M, Lippens S, Meeus A, Declercq W, Vandenabeele P - J. Cell Biol. (2003)

Differential gene expression patterns of the mouse inflammatory caspase subfamily. Single-stranded cDNAs from multiple mouse tissues (panel I and II) were amplified by PCR using primers specific for caspase-1, -11, or -12. PCR for glyceraldehyde-3-phosphate dehydrogenase (G3DPH) was performed to ensure that an equal quality and quantity of cDNA was used. Negative (−) and positive (+) PCR controls (CTRL) lacking or containing the specific cDNAs, respectively. (A) Expression of caspase-1, -11, and -12 mRNA during mouse embryonic development. (B) Expression of caspase-1, -11, and -12 mRNA in different mouse organs.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2172698&req=5

fig1: Differential gene expression patterns of the mouse inflammatory caspase subfamily. Single-stranded cDNAs from multiple mouse tissues (panel I and II) were amplified by PCR using primers specific for caspase-1, -11, or -12. PCR for glyceraldehyde-3-phosphate dehydrogenase (G3DPH) was performed to ensure that an equal quality and quantity of cDNA was used. Negative (−) and positive (+) PCR controls (CTRL) lacking or containing the specific cDNAs, respectively. (A) Expression of caspase-1, -11, and -12 mRNA during mouse embryonic development. (B) Expression of caspase-1, -11, and -12 mRNA in different mouse organs.
Mentions: A previous analysis of the expression pattern of caspase-12 in newborn mouse organs demonstrated that the enzyme is found in many tissues and suggested that the protein is widely expressed in a variety of cells (Nakagawa and Yuan, 2000). However, the Northern blot analysis presented in our previous report demonstrated that the mRNA of caspase-12 is mainly expressed in the lungs and skeletal muscle (Van de Craen et al., 1997). In an attempt to resolve this apparent discrepancy, we analyzed the expression pattern of caspase-12 by RT-PCR during embryonic development and in different adult mouse organs and by Western blotting in different cell lines (Figs. 1 and 2). As caspase-12 is most similar to caspase-1 and -11, we compared the constitutive expression pattern of these three caspases. The mRNAs of the three proteins were highly expressed at day 7 of embryonic development. All three caspases showed a drop in expression at day 11, but whereas the mRNA of caspase-1 disappeared by day 17, the expression levels of caspase-11 and -12 mRNAs increased gradually and reached the initial levels again by that day (Fig. 1 A). The highest level of caspase-12 mRNA expression in adult mouse organs was observed in lymph node, lung, and spleen (Fig. 1 B), confirming our previous results (Van de Craen et al., 1997). The lowest caspase-12 mRNA expression levels were detected in brain, bone marrow, eye, and liver (Fig. 1 B). Interestingly, a double band appeared, for example, in the testis, suggesting the existence of a splice variant. Indeed, splice variants of murine caspase-12 and human pseudo caspase-12 were reported before (Van de Craen et al., 1997; Fischer et al., 2002). Caspase-11 mRNA was observed in all analyzed organs, though the expression levels in the lung, spleen, uterus, and smooth muscle were clearly the highest (Fig. 1 B). Caspase-1 mRNA expression was detected in all of the organs, with the lowest level in the liver and the kidney and the highest in the spleen.

Bottom Line: The effect is increased further when IFN-gamma is combined with TNF, lipopolysaccharide (LPS), or dsRNA.Transient overexpression of full-length caspase-12 leads to proteolytic processing of the enzyme and apoptosis.Similar processing occurs in TNF-, LPS-, Fas ligand-, and thapsigargin (Tg)-induced apoptosis.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Biomedical Research, Unit of Molecular Signalling and Cell Death, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium.

ABSTRACT
Phylogenetic analysis clusters caspase-12 with the inflammatory caspases 1 and 11. We analyzed the expression of caspase-12 in mouse embryos, adult organs, and different cell types and tested the effect of interferons (IFNs) and other proinflammatory stimuli. Constitutive expression of the caspase-12 protein was restricted to certain cell types, such as epithelial cells, primary fibroblasts, and L929 fibrosarcoma cells. In fibroblasts and B16/B16 melanoma cells, caspase-12 expression is stimulated by IFN-gamma but not by IFN-alpha or -beta. The effect is increased further when IFN-gamma is combined with TNF, lipopolysaccharide (LPS), or dsRNA. These stimuli also induce caspase-1 and -11 but inhibit the expression of caspase-3 and -9. In contrast to caspase-1 and -11, no caspase-12 protein was detected in macrophages in any of these treatments. Transient overexpression of full-length caspase-12 leads to proteolytic processing of the enzyme and apoptosis. Similar processing occurs in TNF-, LPS-, Fas ligand-, and thapsigargin (Tg)-induced apoptosis. However, B16/B16 melanoma cells die when treated with the ER stress-inducing agent Tg whether they express caspase-12 or not.

Show MeSH
Related in: MedlinePlus