Limits...
Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis.

Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB, Friedl P - J. Cell Biol. (2003)

Bottom Line: This process, however, is only incompletely attenuated by protease inhibitor-based treatment, suggesting the existence of migratory compensation strategies.In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of beta 1 integrins and MT1-matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks.Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates.

View Article: PubMed Central - PubMed

Affiliation: Department of Dermatology, University of Würzburg, 97080 Würzburg, Germany.

ABSTRACT
Invasive tumor dissemination in vitro and in vivo involves the proteolytic degradation of ECM barriers. This process, however, is only incompletely attenuated by protease inhibitor-based treatment, suggesting the existence of migratory compensation strategies. In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of beta 1 integrins and MT1-matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks. Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates. Sustained protease-independent migration resulted from a flexible amoeba-like shape change, i.e., propulsive squeezing through preexisting matrix gaps and formation of constriction rings in the absence of matrix degradation, concomitant loss of clustered beta 1 integrins and MT1-MMP from fiber binding sites, and a diffuse cortical distribution of the actin cytoskeleton. Acquisition of protease-independent amoeboid dissemination was confirmed for HT-1080 cells injected into the mouse dermis monitored by intravital multiphoton microscopy. In conclusion, the transition from proteolytic mesenchymal toward nonproteolytic amoeboid movement highlights a supramolecular plasticity mechanism in cell migration and further represents a putative escape mechanism in tumor cell dissemination after abrogation of pericellular proteolysis.

Show MeSH

Related in: MedlinePlus

In vivo translocation and morphology of HT-1080/MT1 cells in the mouse dermis. Intravital microscopy of ECM structure (light brown) and labeled cells 3 h (A–D) and 8 h (B) after injection. (A) 3D reconstruction of injection site (asterisk), more distant cells passively scattered around the injection site, and matrix structure at low magnification (10× objective). Control cells (green) and cells pretreated with protease inhibitor cocktail (red). Asterisk, center of injection site. Black arrows, multicellular cord. (B) Position change of control cells (top) and cells pretreated with protease inhibitor cocktail (bottom) from the injection site depicted in A. False-color reconstruction was obtained for each fluorescence channel 3 h (green) and 8 h (red) after injection. Orthotopic superimposition was controlled by the position of coinjected fluorescent beads (circles) as well as the multicellular cord. White arrowheads, regions of cell translocation (right). (C) High resolution imaging of cell morphology and (D) elongation of control cells (green) and cells pretreated with protease inhibitor cocktail (red) at least 2 h after injection (40× objective). Elongation was calculated from 170 cells, six independent experiments; ***, P < 0.0001. Bars: (A and B [left]) 200 μm; (B [right] and C) 100 μm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2172637&req=5

fig6: In vivo translocation and morphology of HT-1080/MT1 cells in the mouse dermis. Intravital microscopy of ECM structure (light brown) and labeled cells 3 h (A–D) and 8 h (B) after injection. (A) 3D reconstruction of injection site (asterisk), more distant cells passively scattered around the injection site, and matrix structure at low magnification (10× objective). Control cells (green) and cells pretreated with protease inhibitor cocktail (red). Asterisk, center of injection site. Black arrows, multicellular cord. (B) Position change of control cells (top) and cells pretreated with protease inhibitor cocktail (bottom) from the injection site depicted in A. False-color reconstruction was obtained for each fluorescence channel 3 h (green) and 8 h (red) after injection. Orthotopic superimposition was controlled by the position of coinjected fluorescent beads (circles) as well as the multicellular cord. White arrowheads, regions of cell translocation (right). (C) High resolution imaging of cell morphology and (D) elongation of control cells (green) and cells pretreated with protease inhibitor cocktail (red) at least 2 h after injection (40× objective). Elongation was calculated from 170 cells, six independent experiments; ***, P < 0.0001. Bars: (A and B [left]) 200 μm; (B [right] and C) 100 μm.

Mentions: Although collagen lattices provide a complex 3D ECM scaffold and a barrier for moving cells, a putatively different spacing and molecular composition of life connective tissue may impose additional physical and molecular constraints, putatively yielding in distinct migration mechanisms. Therefore, the in vivo migration of HT-1080/MT1 cells within the mouse dermis was investigated by multiphoton microscopy. 3 h after the injection of HT-1080/MT1 cells into the loose connective tissue of the mouse dermis (Fig. 6 A), both nontreated control cells (green) and cells pretreated with protease inhibitor cocktail (red) were detected at and passively scattered around the injection site (Fig. 6 A, asterisk), or located within multicellular cords (Fig. 6 A, black arrowheads). In wash-out experiments in vitro, preincubation of cells with protease inhibitor cocktail for 6 h resulted in stable amoeboid movement for at least 10 h before reversion toward mesenchymal migration occurred (unpublished data), indicating both relatively slow turnover of the target proteases after inhibition and full reversibility of inhibitor-induced phenotypic change. In the dermis, ortotopic 3D reconstruction of the injection site 3 and 8 h after injection identified considerable position changes for both control cells (Fig. 6 B, top) and inhibitor-pretreated HT-1080/MT1 cells (Fig. 6 B, bottom). This position change corresponded to a translocation of 4–10 μm/hr (Fig. 6 B, white arrowheads), in part approximating migration velocities present in collagen matrices in vitro (6–36 μm/h; compare Fig. 3 B). At high-resolution reconstruction, cells pretreated with protease inhibitors developed a significantly reduced elongation, reminiscent of amoeboid morphology (Fig. 6 C, red cells), and a near-round median shape (Fig. 6 D), whereas control cells retained their constitutive spindle-like elongation (Fig. 6 C, green cells; Video 8, available at http://www.jcb.org/cgi/content/full/jcb.200209006/DC1). In summary, similar to 3D collagen matrices, abrogation of matrix protease function in HT-1080/MT1 cells was followed by cell movement and concomitant induction of amoeboid morphology in vivo, confirming migratory plasticity for dermal connective tissue.


Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis.

Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB, Friedl P - J. Cell Biol. (2003)

In vivo translocation and morphology of HT-1080/MT1 cells in the mouse dermis. Intravital microscopy of ECM structure (light brown) and labeled cells 3 h (A–D) and 8 h (B) after injection. (A) 3D reconstruction of injection site (asterisk), more distant cells passively scattered around the injection site, and matrix structure at low magnification (10× objective). Control cells (green) and cells pretreated with protease inhibitor cocktail (red). Asterisk, center of injection site. Black arrows, multicellular cord. (B) Position change of control cells (top) and cells pretreated with protease inhibitor cocktail (bottom) from the injection site depicted in A. False-color reconstruction was obtained for each fluorescence channel 3 h (green) and 8 h (red) after injection. Orthotopic superimposition was controlled by the position of coinjected fluorescent beads (circles) as well as the multicellular cord. White arrowheads, regions of cell translocation (right). (C) High resolution imaging of cell morphology and (D) elongation of control cells (green) and cells pretreated with protease inhibitor cocktail (red) at least 2 h after injection (40× objective). Elongation was calculated from 170 cells, six independent experiments; ***, P < 0.0001. Bars: (A and B [left]) 200 μm; (B [right] and C) 100 μm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2172637&req=5

fig6: In vivo translocation and morphology of HT-1080/MT1 cells in the mouse dermis. Intravital microscopy of ECM structure (light brown) and labeled cells 3 h (A–D) and 8 h (B) after injection. (A) 3D reconstruction of injection site (asterisk), more distant cells passively scattered around the injection site, and matrix structure at low magnification (10× objective). Control cells (green) and cells pretreated with protease inhibitor cocktail (red). Asterisk, center of injection site. Black arrows, multicellular cord. (B) Position change of control cells (top) and cells pretreated with protease inhibitor cocktail (bottom) from the injection site depicted in A. False-color reconstruction was obtained for each fluorescence channel 3 h (green) and 8 h (red) after injection. Orthotopic superimposition was controlled by the position of coinjected fluorescent beads (circles) as well as the multicellular cord. White arrowheads, regions of cell translocation (right). (C) High resolution imaging of cell morphology and (D) elongation of control cells (green) and cells pretreated with protease inhibitor cocktail (red) at least 2 h after injection (40× objective). Elongation was calculated from 170 cells, six independent experiments; ***, P < 0.0001. Bars: (A and B [left]) 200 μm; (B [right] and C) 100 μm.
Mentions: Although collagen lattices provide a complex 3D ECM scaffold and a barrier for moving cells, a putatively different spacing and molecular composition of life connective tissue may impose additional physical and molecular constraints, putatively yielding in distinct migration mechanisms. Therefore, the in vivo migration of HT-1080/MT1 cells within the mouse dermis was investigated by multiphoton microscopy. 3 h after the injection of HT-1080/MT1 cells into the loose connective tissue of the mouse dermis (Fig. 6 A), both nontreated control cells (green) and cells pretreated with protease inhibitor cocktail (red) were detected at and passively scattered around the injection site (Fig. 6 A, asterisk), or located within multicellular cords (Fig. 6 A, black arrowheads). In wash-out experiments in vitro, preincubation of cells with protease inhibitor cocktail for 6 h resulted in stable amoeboid movement for at least 10 h before reversion toward mesenchymal migration occurred (unpublished data), indicating both relatively slow turnover of the target proteases after inhibition and full reversibility of inhibitor-induced phenotypic change. In the dermis, ortotopic 3D reconstruction of the injection site 3 and 8 h after injection identified considerable position changes for both control cells (Fig. 6 B, top) and inhibitor-pretreated HT-1080/MT1 cells (Fig. 6 B, bottom). This position change corresponded to a translocation of 4–10 μm/hr (Fig. 6 B, white arrowheads), in part approximating migration velocities present in collagen matrices in vitro (6–36 μm/h; compare Fig. 3 B). At high-resolution reconstruction, cells pretreated with protease inhibitors developed a significantly reduced elongation, reminiscent of amoeboid morphology (Fig. 6 C, red cells), and a near-round median shape (Fig. 6 D), whereas control cells retained their constitutive spindle-like elongation (Fig. 6 C, green cells; Video 8, available at http://www.jcb.org/cgi/content/full/jcb.200209006/DC1). In summary, similar to 3D collagen matrices, abrogation of matrix protease function in HT-1080/MT1 cells was followed by cell movement and concomitant induction of amoeboid morphology in vivo, confirming migratory plasticity for dermal connective tissue.

Bottom Line: This process, however, is only incompletely attenuated by protease inhibitor-based treatment, suggesting the existence of migratory compensation strategies.In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of beta 1 integrins and MT1-matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks.Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates.

View Article: PubMed Central - PubMed

Affiliation: Department of Dermatology, University of Würzburg, 97080 Würzburg, Germany.

ABSTRACT
Invasive tumor dissemination in vitro and in vivo involves the proteolytic degradation of ECM barriers. This process, however, is only incompletely attenuated by protease inhibitor-based treatment, suggesting the existence of migratory compensation strategies. In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of beta 1 integrins and MT1-matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks. Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates. Sustained protease-independent migration resulted from a flexible amoeba-like shape change, i.e., propulsive squeezing through preexisting matrix gaps and formation of constriction rings in the absence of matrix degradation, concomitant loss of clustered beta 1 integrins and MT1-MMP from fiber binding sites, and a diffuse cortical distribution of the actin cytoskeleton. Acquisition of protease-independent amoeboid dissemination was confirmed for HT-1080 cells injected into the mouse dermis monitored by intravital multiphoton microscopy. In conclusion, the transition from proteolytic mesenchymal toward nonproteolytic amoeboid movement highlights a supramolecular plasticity mechanism in cell migration and further represents a putative escape mechanism in tumor cell dissemination after abrogation of pericellular proteolysis.

Show MeSH
Related in: MedlinePlus