Limits...
Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis.

Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB, Friedl P - J. Cell Biol. (2003)

Bottom Line: This process, however, is only incompletely attenuated by protease inhibitor-based treatment, suggesting the existence of migratory compensation strategies.In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of beta 1 integrins and MT1-matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks.Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates.

View Article: PubMed Central - PubMed

Affiliation: Department of Dermatology, University of Würzburg, 97080 Würzburg, Germany.

ABSTRACT
Invasive tumor dissemination in vitro and in vivo involves the proteolytic degradation of ECM barriers. This process, however, is only incompletely attenuated by protease inhibitor-based treatment, suggesting the existence of migratory compensation strategies. In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of beta 1 integrins and MT1-matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks. Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates. Sustained protease-independent migration resulted from a flexible amoeba-like shape change, i.e., propulsive squeezing through preexisting matrix gaps and formation of constriction rings in the absence of matrix degradation, concomitant loss of clustered beta 1 integrins and MT1-MMP from fiber binding sites, and a diffuse cortical distribution of the actin cytoskeleton. Acquisition of protease-independent amoeboid dissemination was confirmed for HT-1080 cells injected into the mouse dermis monitored by intravital multiphoton microscopy. In conclusion, the transition from proteolytic mesenchymal toward nonproteolytic amoeboid movement highlights a supramolecular plasticity mechanism in cell migration and further represents a putative escape mechanism in tumor cell dissemination after abrogation of pericellular proteolysis.

Show MeSH

Related in: MedlinePlus

Transition of spindle-shaped (mesenchymal) to more spherical (amoeboid) migration in HT1080/MT1 and MDA-MB-231 cells in the presence of protease inhibitor cocktail. (A) Conversion of elongated (left) toward spherical shape (right) in HT1080/MT1 cells, and (B) higher magnification of an amoeboid migrating cell in the presence of inhibitor cocktail. Time in B, 117 min. (C) Median elongation (calculated from length divided by width) in the absence and presence of protease inhibitor cocktail (n = 3; 170 cells; ***, P < 0.0001). (D) Inhibition of collagen degradation by MDA-MB-231 cells by protease inhibitor cocktail (n = 3; P < 0.05, unpaired two-tailed t test). (E) Conversion from spindle shaped (left) to more spherical morphology (right), and (F) reduced median elongation in the presence of protease inhibitors in MDA-MB-231 cells (n = 3; 200 cells; ***, P < 0.0001). (G) Frequency of mesenchymal and amoeboid shape in actually migrating cells in the absence (▪) and presence (□) of protease inhibitor cocktail (HT-1080/MT1 cells, n = 3, 100 cells; **, P < 0.001 for difference to untreated control; two-tailed t test for independent means). Cells of indeterminate morphology (15–40%; for details see the Materials and methods) were excluded from analysis. Bars: (A and E) 100 μm; (B) 20 μm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2172637&req=5

fig4: Transition of spindle-shaped (mesenchymal) to more spherical (amoeboid) migration in HT1080/MT1 and MDA-MB-231 cells in the presence of protease inhibitor cocktail. (A) Conversion of elongated (left) toward spherical shape (right) in HT1080/MT1 cells, and (B) higher magnification of an amoeboid migrating cell in the presence of inhibitor cocktail. Time in B, 117 min. (C) Median elongation (calculated from length divided by width) in the absence and presence of protease inhibitor cocktail (n = 3; 170 cells; ***, P < 0.0001). (D) Inhibition of collagen degradation by MDA-MB-231 cells by protease inhibitor cocktail (n = 3; P < 0.05, unpaired two-tailed t test). (E) Conversion from spindle shaped (left) to more spherical morphology (right), and (F) reduced median elongation in the presence of protease inhibitors in MDA-MB-231 cells (n = 3; 200 cells; ***, P < 0.0001). (G) Frequency of mesenchymal and amoeboid shape in actually migrating cells in the absence (▪) and presence (□) of protease inhibitor cocktail (HT-1080/MT1 cells, n = 3, 100 cells; **, P < 0.001 for difference to untreated control; two-tailed t test for independent means). Cells of indeterminate morphology (15–40%; for details see the Materials and methods) were excluded from analysis. Bars: (A and E) 100 μm; (B) 20 μm.

Mentions: As it became apparent from the video recordings (Video 3, available at http://www.jcb.org/cgi/content/full/jcb.200209006/DC1), the presence of protease inhibitor cocktail changed several aspects of migratory behavior in HT-1080/MT1 cells (Fig. 4). Whereas spontaneously moving cells maintained a spindle-shaped, elongated morphology (Fig. 4 A, left), this mesenchymal migration type was converted to less polarized, more spherical morphodynamics in the presence of protease inhibitor cocktail (Fig. 4 A, right; Video 3). Spherical-shaped cells sustained migration (Fig. 4 B) and exhibited a significant reduction in median axis length compared with control cells (Fig. 4 C). In the presence of protease inhibitors, spherical morphodynamics included flexible shape change and forward propulsion guided by multiple anterior and outward ruffling filopodia, as detected by high resolution video microscopy (Video 4, available online at http://www.jcb.org/cgi/content/full/jcb.200209006/DC1). Very similar observations were obtained for invasive MDA-MB-231 mammary carcinoma cells, expressing soluble MMPs, MT-MMPs, serine proteases, and cathepsins (Ishibashi et al., 1999; Bachmeier et al., 2001). Inhibition of proteolysis in MDA-MB-231 cells by protease inhibitor cocktail (Fig. 4 D), albeit slightly less efficient than in HT-1080 cells, resulted in a similar transition from constitutive spindle shape to less polarized, elliptoid morphodynamics (Fig. 4 E; Video 5, available online at http://www.jcb.org/cgi/content/full/jcb.200209006/DC1), including a significantly shortened median axis length (Fig. 4 F).


Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis.

Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB, Friedl P - J. Cell Biol. (2003)

Transition of spindle-shaped (mesenchymal) to more spherical (amoeboid) migration in HT1080/MT1 and MDA-MB-231 cells in the presence of protease inhibitor cocktail. (A) Conversion of elongated (left) toward spherical shape (right) in HT1080/MT1 cells, and (B) higher magnification of an amoeboid migrating cell in the presence of inhibitor cocktail. Time in B, 117 min. (C) Median elongation (calculated from length divided by width) in the absence and presence of protease inhibitor cocktail (n = 3; 170 cells; ***, P < 0.0001). (D) Inhibition of collagen degradation by MDA-MB-231 cells by protease inhibitor cocktail (n = 3; P < 0.05, unpaired two-tailed t test). (E) Conversion from spindle shaped (left) to more spherical morphology (right), and (F) reduced median elongation in the presence of protease inhibitors in MDA-MB-231 cells (n = 3; 200 cells; ***, P < 0.0001). (G) Frequency of mesenchymal and amoeboid shape in actually migrating cells in the absence (▪) and presence (□) of protease inhibitor cocktail (HT-1080/MT1 cells, n = 3, 100 cells; **, P < 0.001 for difference to untreated control; two-tailed t test for independent means). Cells of indeterminate morphology (15–40%; for details see the Materials and methods) were excluded from analysis. Bars: (A and E) 100 μm; (B) 20 μm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2172637&req=5

fig4: Transition of spindle-shaped (mesenchymal) to more spherical (amoeboid) migration in HT1080/MT1 and MDA-MB-231 cells in the presence of protease inhibitor cocktail. (A) Conversion of elongated (left) toward spherical shape (right) in HT1080/MT1 cells, and (B) higher magnification of an amoeboid migrating cell in the presence of inhibitor cocktail. Time in B, 117 min. (C) Median elongation (calculated from length divided by width) in the absence and presence of protease inhibitor cocktail (n = 3; 170 cells; ***, P < 0.0001). (D) Inhibition of collagen degradation by MDA-MB-231 cells by protease inhibitor cocktail (n = 3; P < 0.05, unpaired two-tailed t test). (E) Conversion from spindle shaped (left) to more spherical morphology (right), and (F) reduced median elongation in the presence of protease inhibitors in MDA-MB-231 cells (n = 3; 200 cells; ***, P < 0.0001). (G) Frequency of mesenchymal and amoeboid shape in actually migrating cells in the absence (▪) and presence (□) of protease inhibitor cocktail (HT-1080/MT1 cells, n = 3, 100 cells; **, P < 0.001 for difference to untreated control; two-tailed t test for independent means). Cells of indeterminate morphology (15–40%; for details see the Materials and methods) were excluded from analysis. Bars: (A and E) 100 μm; (B) 20 μm.
Mentions: As it became apparent from the video recordings (Video 3, available at http://www.jcb.org/cgi/content/full/jcb.200209006/DC1), the presence of protease inhibitor cocktail changed several aspects of migratory behavior in HT-1080/MT1 cells (Fig. 4). Whereas spontaneously moving cells maintained a spindle-shaped, elongated morphology (Fig. 4 A, left), this mesenchymal migration type was converted to less polarized, more spherical morphodynamics in the presence of protease inhibitor cocktail (Fig. 4 A, right; Video 3). Spherical-shaped cells sustained migration (Fig. 4 B) and exhibited a significant reduction in median axis length compared with control cells (Fig. 4 C). In the presence of protease inhibitors, spherical morphodynamics included flexible shape change and forward propulsion guided by multiple anterior and outward ruffling filopodia, as detected by high resolution video microscopy (Video 4, available online at http://www.jcb.org/cgi/content/full/jcb.200209006/DC1). Very similar observations were obtained for invasive MDA-MB-231 mammary carcinoma cells, expressing soluble MMPs, MT-MMPs, serine proteases, and cathepsins (Ishibashi et al., 1999; Bachmeier et al., 2001). Inhibition of proteolysis in MDA-MB-231 cells by protease inhibitor cocktail (Fig. 4 D), albeit slightly less efficient than in HT-1080 cells, resulted in a similar transition from constitutive spindle shape to less polarized, elliptoid morphodynamics (Fig. 4 E; Video 5, available online at http://www.jcb.org/cgi/content/full/jcb.200209006/DC1), including a significantly shortened median axis length (Fig. 4 F).

Bottom Line: This process, however, is only incompletely attenuated by protease inhibitor-based treatment, suggesting the existence of migratory compensation strategies.In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of beta 1 integrins and MT1-matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks.Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates.

View Article: PubMed Central - PubMed

Affiliation: Department of Dermatology, University of Würzburg, 97080 Würzburg, Germany.

ABSTRACT
Invasive tumor dissemination in vitro and in vivo involves the proteolytic degradation of ECM barriers. This process, however, is only incompletely attenuated by protease inhibitor-based treatment, suggesting the existence of migratory compensation strategies. In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of beta 1 integrins and MT1-matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks. Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates. Sustained protease-independent migration resulted from a flexible amoeba-like shape change, i.e., propulsive squeezing through preexisting matrix gaps and formation of constriction rings in the absence of matrix degradation, concomitant loss of clustered beta 1 integrins and MT1-MMP from fiber binding sites, and a diffuse cortical distribution of the actin cytoskeleton. Acquisition of protease-independent amoeboid dissemination was confirmed for HT-1080 cells injected into the mouse dermis monitored by intravital multiphoton microscopy. In conclusion, the transition from proteolytic mesenchymal toward nonproteolytic amoeboid movement highlights a supramolecular plasticity mechanism in cell migration and further represents a putative escape mechanism in tumor cell dissemination after abrogation of pericellular proteolysis.

Show MeSH
Related in: MedlinePlus