Limits...
Life depends upon two kinds of water.

Wiggins P - PLoS ONE (2008)

Bottom Line: Energy transduction is neither possible and nor necessary.Bioactive enantiomorphs partition into low density water in which they polymerise spontaneously.The simplified model of water has great explanatory power.

View Article: PubMed Central - PubMed

Affiliation: Mairangi Bay, Auckland, New Zealand. p.wiggins@paradise.net.nz

ABSTRACT

Background: Many well-documented biochemical processes lack a molecular mechanism. Examples are: how ATP hydrolysis and an enzyme contrive to perform work, such as active transport; how peptides are formed from amino acids and DNA from nucleotides; how proteases cleave peptide bonds, how bone mineralses; how enzymes distinguish between sodium and potassium; how chirality of biopolymers was established prebiotically.

Methodology/principal findings: It is shown that involvement of water in all these processes is mandatory, but the water must be of the simplified configuration in which there are only two strengths of water-water hydrogen bonds, and in which these two types of water coexist as microdomains throughout the liquid temperature range. Since they have different strengths of hydrogen bonds, the microdomains differ in all their physical and chemical properties. Solutes partition asymmetrically, generating osmotic pressure gradients which must be compensated for or abolished. Displacement of the equilibrium between high and low density waters incurs a thermodynamic cost which limits solubility, depresses ionisation of water, drives protein folding and prevents high density water from boiling at its intrinsic boiling point which appears to be below 0 degrees C. Active processes in biochemistry take place in sequential partial reactions, most of which release small amounts of free energy as heat. This ensures that the system is never far from equilibrium so that efficiency is extremely high. Energy transduction is neither possible and nor necessary. Chirality was probably established in prebiotic clays which must have carried stable populations of high density and low density water domains. Bioactive enantiomorphs partition into low density water in which they polymerise spontaneously.

Conclusions/significance: The simplified model of water has great explanatory power.

Show MeSH

Related in: MedlinePlus

Glass beads (44–60 µm in diameter), made hydrophobic with dimethyldichloro silane.a, 2 g beads in 10 ml water; b, 4 g beads in 10 ml water with countercation K+. Cs+, Ca 2+ or Mg2+. c, 2 g beads in 10 ml water with countercation Li+, Na+ or H+; d, the same as c photographed immediately after setting up; the haziness in the water shows the dropping of beads through the water.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2170473&req=5

pone-0001406-g006: Glass beads (44–60 µm in diameter), made hydrophobic with dimethyldichloro silane.a, 2 g beads in 10 ml water; b, 4 g beads in 10 ml water with countercation K+. Cs+, Ca 2+ or Mg2+. c, 2 g beads in 10 ml water with countercation Li+, Na+ or H+; d, the same as c photographed immediately after setting up; the haziness in the water shows the dropping of beads through the water.

Mentions: The principal objective of these experiments was to explore the effects of counter ion alone on the pockets of LDW and HDW associated with charged groups. The outstanding properties of the hydrophobic beads with K+ or Cs+ as counter ion were that the beads aggregated strongly, in spite of their negative charges, and floated on water, in spite of their density of 2.6 g/ml. This is illustrated in Figure 6a and b. In 6a, 2 g beads formed a single aggregate floating on the surface of water. In 6b, 4 g beads sank to the bottom of the water, but still as a tightly aggregated mass. Both these properties of the beads must be attributed to formation of LDW at the surfaces. Too much LDW induces aggregation of the beads, decreasing the surface area of contact between beads and water. LDW at the surface also prevented escape of air molecules trapped between the dry beads so that the beads floated. Both aggregation and floating occurred only with water and D2O, not with hexane or DMSO. Both aggregation and floating were also absent in uncoated hydrophilic beads.


Life depends upon two kinds of water.

Wiggins P - PLoS ONE (2008)

Glass beads (44–60 µm in diameter), made hydrophobic with dimethyldichloro silane.a, 2 g beads in 10 ml water; b, 4 g beads in 10 ml water with countercation K+. Cs+, Ca 2+ or Mg2+. c, 2 g beads in 10 ml water with countercation Li+, Na+ or H+; d, the same as c photographed immediately after setting up; the haziness in the water shows the dropping of beads through the water.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2170473&req=5

pone-0001406-g006: Glass beads (44–60 µm in diameter), made hydrophobic with dimethyldichloro silane.a, 2 g beads in 10 ml water; b, 4 g beads in 10 ml water with countercation K+. Cs+, Ca 2+ or Mg2+. c, 2 g beads in 10 ml water with countercation Li+, Na+ or H+; d, the same as c photographed immediately after setting up; the haziness in the water shows the dropping of beads through the water.
Mentions: The principal objective of these experiments was to explore the effects of counter ion alone on the pockets of LDW and HDW associated with charged groups. The outstanding properties of the hydrophobic beads with K+ or Cs+ as counter ion were that the beads aggregated strongly, in spite of their negative charges, and floated on water, in spite of their density of 2.6 g/ml. This is illustrated in Figure 6a and b. In 6a, 2 g beads formed a single aggregate floating on the surface of water. In 6b, 4 g beads sank to the bottom of the water, but still as a tightly aggregated mass. Both these properties of the beads must be attributed to formation of LDW at the surfaces. Too much LDW induces aggregation of the beads, decreasing the surface area of contact between beads and water. LDW at the surface also prevented escape of air molecules trapped between the dry beads so that the beads floated. Both aggregation and floating occurred only with water and D2O, not with hexane or DMSO. Both aggregation and floating were also absent in uncoated hydrophilic beads.

Bottom Line: Energy transduction is neither possible and nor necessary.Bioactive enantiomorphs partition into low density water in which they polymerise spontaneously.The simplified model of water has great explanatory power.

View Article: PubMed Central - PubMed

Affiliation: Mairangi Bay, Auckland, New Zealand. p.wiggins@paradise.net.nz

ABSTRACT

Background: Many well-documented biochemical processes lack a molecular mechanism. Examples are: how ATP hydrolysis and an enzyme contrive to perform work, such as active transport; how peptides are formed from amino acids and DNA from nucleotides; how proteases cleave peptide bonds, how bone mineralses; how enzymes distinguish between sodium and potassium; how chirality of biopolymers was established prebiotically.

Methodology/principal findings: It is shown that involvement of water in all these processes is mandatory, but the water must be of the simplified configuration in which there are only two strengths of water-water hydrogen bonds, and in which these two types of water coexist as microdomains throughout the liquid temperature range. Since they have different strengths of hydrogen bonds, the microdomains differ in all their physical and chemical properties. Solutes partition asymmetrically, generating osmotic pressure gradients which must be compensated for or abolished. Displacement of the equilibrium between high and low density waters incurs a thermodynamic cost which limits solubility, depresses ionisation of water, drives protein folding and prevents high density water from boiling at its intrinsic boiling point which appears to be below 0 degrees C. Active processes in biochemistry take place in sequential partial reactions, most of which release small amounts of free energy as heat. This ensures that the system is never far from equilibrium so that efficiency is extremely high. Energy transduction is neither possible and nor necessary. Chirality was probably established in prebiotic clays which must have carried stable populations of high density and low density water domains. Bioactive enantiomorphs partition into low density water in which they polymerise spontaneously.

Conclusions/significance: The simplified model of water has great explanatory power.

Show MeSH
Related in: MedlinePlus