Limits...
The simultaneous presence and expression of human hepatitis C virus (HCV), human herpesvirus-6 (HHV-6), and human immunodeficiency virus-1 (HIV-1) in a single human T-cell.

Salahuddin SZ, Snyder KA, Godwin A, Grewal R, Prichard JG, Kelley AS, Revie D - Virol. J. (2007)

Bottom Line: We report here the successful infection of a T-cell (CEM) by CIMM-HCV, HHV-6, and HIV-1.In addition, CIMM-HCV was present in the perinuclear space, suggesting their possible synthesis in the nucleus.All measurements were made on cultured cells and cell culture supernatants.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Basic Research, California Institute of Molecular Medicine, Ventura, California, USA. zaki@cimm.net

ABSTRACT
We have developed a system that isolates and replicates HCV in vitro. These isolates are called CIMM-HCV. This system has made it possible to analyze the biology, nature, and extent of HCV variability, among other things. Individuals that are infected with HIV-1 are often also infected with HCV and HHV-6. In addition to HCV, our lab has systems for replicating HIV-1 and HHV-6. We asked whether all these viruses could infect the same cells. We report here the successful infection of a T-cell (CEM) by CIMM-HCV, HHV-6, and HIV-1. PCR analyses demonstrated that the CEM cells were productively infected by HHV-6A. RT-PCR showed that the same cell culture was positive for HCV and HIV-1. Co-infection of a T-cell by all three viruses was confirmed by transmission electron microscopy (TEM). All these viruses are highly cytolytic; therefore, triply-infected cells were short lived. However, HIV-1 and HCV co-infected cells unexpectedly lasted for several weeks. Viral replication was unhindered and the phenomenon of 'dominance' was not observed in our experiments. In addition, CIMM-HCV was present in the perinuclear space, suggesting their possible synthesis in the nucleus. This report is based entirely on viruses produced in vitro in our laboratories. As part of the determinations of host ranges of these viruses, studies were designed to demonstrate the infection of a single cell by these viruses and to study the consequences of this phenomenon. All measurements were made on cultured cells and cell culture supernatants.

Show MeSH

Related in: MedlinePlus

Enlargements of triply-infected cell from Figure 6. A. HHV-6 budding from the nuclear membrane (black arrows) and HCV in the perinuclear space (white arrow). B. HCV particles in the cytoplasm. C. HIV-1 particle outside the cell. D. HHV-6 (black arrows) and HCV (white arrow) in the perinuclear space.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2170440&req=5

Figure 7: Enlargements of triply-infected cell from Figure 6. A. HHV-6 budding from the nuclear membrane (black arrows) and HCV in the perinuclear space (white arrow). B. HCV particles in the cytoplasm. C. HIV-1 particle outside the cell. D. HHV-6 (black arrows) and HCV (white arrow) in the perinuclear space.

Mentions: As noted above, the K7 cell culture contained all three viruses. HIV-1 and HCV were seen outside the cells (Figure 5), and the cells contained both complete and incomplete HCV virions. One example of a triply infected cell is shown in Figure 6. Incomplete HHV-6A particles were seen budding from the nucleus (Figures 7A–7D). HIV-1 was seen budding from the plasma membrane of the cell (Figure 6). In addition, HCV virions were seen in the cytoplasm and in the vicinity of budding HHV-6A particles (Figure 7B), and other incomplete HCV particles were also seen in the perinuclear space (Figures 7A and 7D). These HCV particles were approximately 70 to 100 nm in size. HIV-1 was present outside but adjacent to or in the vicinity of the infected cell (Figure 7C).


The simultaneous presence and expression of human hepatitis C virus (HCV), human herpesvirus-6 (HHV-6), and human immunodeficiency virus-1 (HIV-1) in a single human T-cell.

Salahuddin SZ, Snyder KA, Godwin A, Grewal R, Prichard JG, Kelley AS, Revie D - Virol. J. (2007)

Enlargements of triply-infected cell from Figure 6. A. HHV-6 budding from the nuclear membrane (black arrows) and HCV in the perinuclear space (white arrow). B. HCV particles in the cytoplasm. C. HIV-1 particle outside the cell. D. HHV-6 (black arrows) and HCV (white arrow) in the perinuclear space.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2170440&req=5

Figure 7: Enlargements of triply-infected cell from Figure 6. A. HHV-6 budding from the nuclear membrane (black arrows) and HCV in the perinuclear space (white arrow). B. HCV particles in the cytoplasm. C. HIV-1 particle outside the cell. D. HHV-6 (black arrows) and HCV (white arrow) in the perinuclear space.
Mentions: As noted above, the K7 cell culture contained all three viruses. HIV-1 and HCV were seen outside the cells (Figure 5), and the cells contained both complete and incomplete HCV virions. One example of a triply infected cell is shown in Figure 6. Incomplete HHV-6A particles were seen budding from the nucleus (Figures 7A–7D). HIV-1 was seen budding from the plasma membrane of the cell (Figure 6). In addition, HCV virions were seen in the cytoplasm and in the vicinity of budding HHV-6A particles (Figure 7B), and other incomplete HCV particles were also seen in the perinuclear space (Figures 7A and 7D). These HCV particles were approximately 70 to 100 nm in size. HIV-1 was present outside but adjacent to or in the vicinity of the infected cell (Figure 7C).

Bottom Line: We report here the successful infection of a T-cell (CEM) by CIMM-HCV, HHV-6, and HIV-1.In addition, CIMM-HCV was present in the perinuclear space, suggesting their possible synthesis in the nucleus.All measurements were made on cultured cells and cell culture supernatants.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Basic Research, California Institute of Molecular Medicine, Ventura, California, USA. zaki@cimm.net

ABSTRACT
We have developed a system that isolates and replicates HCV in vitro. These isolates are called CIMM-HCV. This system has made it possible to analyze the biology, nature, and extent of HCV variability, among other things. Individuals that are infected with HIV-1 are often also infected with HCV and HHV-6. In addition to HCV, our lab has systems for replicating HIV-1 and HHV-6. We asked whether all these viruses could infect the same cells. We report here the successful infection of a T-cell (CEM) by CIMM-HCV, HHV-6, and HIV-1. PCR analyses demonstrated that the CEM cells were productively infected by HHV-6A. RT-PCR showed that the same cell culture was positive for HCV and HIV-1. Co-infection of a T-cell by all three viruses was confirmed by transmission electron microscopy (TEM). All these viruses are highly cytolytic; therefore, triply-infected cells were short lived. However, HIV-1 and HCV co-infected cells unexpectedly lasted for several weeks. Viral replication was unhindered and the phenomenon of 'dominance' was not observed in our experiments. In addition, CIMM-HCV was present in the perinuclear space, suggesting their possible synthesis in the nucleus. This report is based entirely on viruses produced in vitro in our laboratories. As part of the determinations of host ranges of these viruses, studies were designed to demonstrate the infection of a single cell by these viruses and to study the consequences of this phenomenon. All measurements were made on cultured cells and cell culture supernatants.

Show MeSH
Related in: MedlinePlus