Limits...
Multi-locus sequence typing of Bartonella henselae isolates from three continents reveals hypervirulent and feline-associated clones.

Arvand M, Feil EJ, Giladi M, Boulouis HJ, Viezens J - PLoS ONE (2007)

Bottom Line: Previous investigations have suggested that a limited subset of B. henselae isolates may be associated with human disease.The difference in host association of STs 1 (human) and 7 (feline) was statistically significant (P< or =0.001). eBURST analysis assigned the 14 STs to three clonal lineages, which contained two or more STs, and a singleton comprising ST7.These data indicate that B. henselae lineages differ in their virulence properties for humans and contribute to a better understanding of the population structure of B. henselae.

View Article: PubMed Central - PubMed

Affiliation: Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universität Rostock, Rostock, Germany. mardjan.arvand@med.uni-rostock.de

ABSTRACT
Bartonella henselae is a zoonotic pathogen and the causative agent of cat scratch disease and a variety of other disease manifestations in humans. Previous investigations have suggested that a limited subset of B. henselae isolates may be associated with human disease. In the present study, 182 human and feline B. henselae isolates from Europe, North America and Australia were analysed by multi-locus sequence typing (MLST) to detect any associations between sequence type (ST), host species and geographical distribution of the isolates. A total of 14 sequence types were detected, but over 66% (16/24) of the isolates recovered from human disease corresponded to a single genotype, ST1, and this type was detected in all three continents. In contrast, 27.2% (43/158) of the feline isolates corresponded to ST7, but this ST was not recovered from humans and was restricted to Europe. The difference in host association of STs 1 (human) and 7 (feline) was statistically significant (P< or =0.001). eBURST analysis assigned the 14 STs to three clonal lineages, which contained two or more STs, and a singleton comprising ST7. These groups were broadly consistent with a neighbour-joining tree, although splits decomposition analysis was indicative of a history of recombination. These data indicate that B. henselae lineages differ in their virulence properties for humans and contribute to a better understanding of the population structure of B. henselae.

Show MeSH

Related in: MedlinePlus

Geographical distribution of B. henselae STs in different continents.The lower panel shows the ST distribution in European countries that were represented by at least 10 isolates.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2147075&req=5

pone-0001346-g001: Geographical distribution of B. henselae STs in different continents.The lower panel shows the ST distribution in European countries that were represented by at least 10 isolates.

Mentions: ST1, ST5, ST6, and ST7 were the most common STs, representing 23.6%, 20.9%, 15.4%, and 23.6% of the isolates, respectively. ST1, ST5 and ST6 were isolated in Europe, America and Australia, while ST7 was only distributed in Europe. ST4 and ST9 were distributed in two continents only, being absent from the USA and Australian samples respectively. The less common STs, noted in 1-7 isolates, were found in one continent only. Figure 1 shows the distribution of STs in different continents and among European countries that were represented by more than 10 isolates. The distribution of the major STs in different continents was found to be significantly non-random by chi-square test for STs 1 and 7 (p<0.00001 each), and ST6 (p = 0.039). In contrast, ST5 was evenly distributed among the three continents (p>0.1). The distribution of STs varied also considerably between different countries within Europe. The dominance of ST1 in Italy and Israel, but near absence in France, UK and Germany was particularly striking. To examine this further, we divided the European isolates in two subgroups: i) Mediterranean isolates including all isolates from Israel, Italy, and the Urlly8 (Marseille) isolate, and ii) North-western European isolates (NW-Europe) including all other European isolates. The relative frequency of major STs in different geographic regions was again evaluated by chi-square test (Table 2). This revealed a highly non-random distribution for STs 1 and 7 in Europe, these being over-represented in the Mediterranean and NW Europe, respectively.


Multi-locus sequence typing of Bartonella henselae isolates from three continents reveals hypervirulent and feline-associated clones.

Arvand M, Feil EJ, Giladi M, Boulouis HJ, Viezens J - PLoS ONE (2007)

Geographical distribution of B. henselae STs in different continents.The lower panel shows the ST distribution in European countries that were represented by at least 10 isolates.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2147075&req=5

pone-0001346-g001: Geographical distribution of B. henselae STs in different continents.The lower panel shows the ST distribution in European countries that were represented by at least 10 isolates.
Mentions: ST1, ST5, ST6, and ST7 were the most common STs, representing 23.6%, 20.9%, 15.4%, and 23.6% of the isolates, respectively. ST1, ST5 and ST6 were isolated in Europe, America and Australia, while ST7 was only distributed in Europe. ST4 and ST9 were distributed in two continents only, being absent from the USA and Australian samples respectively. The less common STs, noted in 1-7 isolates, were found in one continent only. Figure 1 shows the distribution of STs in different continents and among European countries that were represented by more than 10 isolates. The distribution of the major STs in different continents was found to be significantly non-random by chi-square test for STs 1 and 7 (p<0.00001 each), and ST6 (p = 0.039). In contrast, ST5 was evenly distributed among the three continents (p>0.1). The distribution of STs varied also considerably between different countries within Europe. The dominance of ST1 in Italy and Israel, but near absence in France, UK and Germany was particularly striking. To examine this further, we divided the European isolates in two subgroups: i) Mediterranean isolates including all isolates from Israel, Italy, and the Urlly8 (Marseille) isolate, and ii) North-western European isolates (NW-Europe) including all other European isolates. The relative frequency of major STs in different geographic regions was again evaluated by chi-square test (Table 2). This revealed a highly non-random distribution for STs 1 and 7 in Europe, these being over-represented in the Mediterranean and NW Europe, respectively.

Bottom Line: Previous investigations have suggested that a limited subset of B. henselae isolates may be associated with human disease.The difference in host association of STs 1 (human) and 7 (feline) was statistically significant (P< or =0.001). eBURST analysis assigned the 14 STs to three clonal lineages, which contained two or more STs, and a singleton comprising ST7.These data indicate that B. henselae lineages differ in their virulence properties for humans and contribute to a better understanding of the population structure of B. henselae.

View Article: PubMed Central - PubMed

Affiliation: Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universität Rostock, Rostock, Germany. mardjan.arvand@med.uni-rostock.de

ABSTRACT
Bartonella henselae is a zoonotic pathogen and the causative agent of cat scratch disease and a variety of other disease manifestations in humans. Previous investigations have suggested that a limited subset of B. henselae isolates may be associated with human disease. In the present study, 182 human and feline B. henselae isolates from Europe, North America and Australia were analysed by multi-locus sequence typing (MLST) to detect any associations between sequence type (ST), host species and geographical distribution of the isolates. A total of 14 sequence types were detected, but over 66% (16/24) of the isolates recovered from human disease corresponded to a single genotype, ST1, and this type was detected in all three continents. In contrast, 27.2% (43/158) of the feline isolates corresponded to ST7, but this ST was not recovered from humans and was restricted to Europe. The difference in host association of STs 1 (human) and 7 (feline) was statistically significant (P< or =0.001). eBURST analysis assigned the 14 STs to three clonal lineages, which contained two or more STs, and a singleton comprising ST7. These groups were broadly consistent with a neighbour-joining tree, although splits decomposition analysis was indicative of a history of recombination. These data indicate that B. henselae lineages differ in their virulence properties for humans and contribute to a better understanding of the population structure of B. henselae.

Show MeSH
Related in: MedlinePlus