Limits...
The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri.

Miller WG, Parker CT, Rubenfield M, Mendz GL, Wösten MM, Ussery DW, Stolz JF, Binnewies TT, Hallin PF, Wang G, Malek JA, Rogosin A, Stanker LH, Mandrell RE - PLoS ONE (2007)

Bottom Line: In addition, the analyses indicated also that a substantial proportion of the A. butzleri genome is devoted to growth and survival under diverse environmental conditions, with a large number of respiration-associated proteins, signal transduction and chemotaxis proteins and proteins involved in DNA repair and adaptation.The presence of pathways and loci associated often with non-host-associated organisms, as well as genes associated with virulence, suggests that A. butzleri is a free-living, water-borne organism that might be classified rightfully as an emerging pathogen.The genome sequence and analyses presented in this study are an important first step in understanding the physiology and genetics of this organism, which constitutes a bridge between the environment and mammalian hosts.

View Article: PubMed Central - PubMed

Affiliation: Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, California, United States of America. bmiller@pw.usda.gov

ABSTRACT

Background: Arcobacter butzleri is a member of the epsilon subdivision of the Proteobacteria and a close taxonomic relative of established pathogens, such as Campylobacter jejuni and Helicobacter pylori. Here we present the complete genome sequence of the human clinical isolate, A. butzleri strain RM4018.

Methodology/principal findings: Arcobacter butzleri is a member of the Campylobacteraceae, but the majority of its proteome is most similar to those of Sulfuromonas denitrificans and Wolinella succinogenes, both members of the Helicobacteraceae, and those of the deep-sea vent Epsilonproteobacteria Sulfurovum and Nitratiruptor. In addition, many of the genes and pathways described here, e.g. those involved in signal transduction and sulfur metabolism, have been identified previously within the epsilon subdivision only in S. denitrificans, W. succinogenes, Sulfurovum, and/or Nitratiruptor, or are unique to the subdivision. In addition, the analyses indicated also that a substantial proportion of the A. butzleri genome is devoted to growth and survival under diverse environmental conditions, with a large number of respiration-associated proteins, signal transduction and chemotaxis proteins and proteins involved in DNA repair and adaptation. To investigate the genomic diversity of A. butzleri strains, we constructed an A. butzleri DNA microarray comprising 2238 genes from strain RM4018. Comparative genomic indexing analysis of 12 additional A. butzleri strains identified both the core genes of A. butzleri and intraspecies hypervariable regions, where <70% of the genes were present in at least two strains.

Conclusion/significance: The presence of pathways and loci associated often with non-host-associated organisms, as well as genes associated with virulence, suggests that A. butzleri is a free-living, water-borne organism that might be classified rightfully as an emerging pathogen. The genome sequence and analyses presented in this study are an important first step in understanding the physiology and genetics of this organism, which constitutes a bridge between the environment and mammalian hosts.

Show MeSH

Related in: MedlinePlus

Sulfur assimilation and biosynthesis of the sulfur-containing amino acids.Genes/proteins in strain RM4018 unique within Campylobacteraceae or proteins with Campylobacteraceae orthologs of low similarity are labeled/shaded in blue.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2147049&req=5

pone-0001358-g002: Sulfur assimilation and biosynthesis of the sulfur-containing amino acids.Genes/proteins in strain RM4018 unique within Campylobacteraceae or proteins with Campylobacteraceae orthologs of low similarity are labeled/shaded in blue.

Mentions: Arcobacter butzleri strain RM4018 contains a number of genes required for sulfur uptake and assimilation (Figure 2). These genes include those encoding the sulfate ABC transporter CysATW, the sulfate binding protein Sbp, the ATP sulfhydrylase CysDN, the adenosine phosphosulfate (APS) reductase CysH, the sulfite reductase proteins CysI and CysJ and the siroheme synthase CysG. CysD and CysN have been identified also in C. coli, but the position of these genes, along with the APS kinase-encoding gene cysC and the 3′(2′),5′-bisphosphate nucleotidase-encoding gene cysQ, is in the capsular locus, suggesting that these genes in C. coli are involved in the formation or modification of the capsule and not sulfur assimilation per se.


The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri.

Miller WG, Parker CT, Rubenfield M, Mendz GL, Wösten MM, Ussery DW, Stolz JF, Binnewies TT, Hallin PF, Wang G, Malek JA, Rogosin A, Stanker LH, Mandrell RE - PLoS ONE (2007)

Sulfur assimilation and biosynthesis of the sulfur-containing amino acids.Genes/proteins in strain RM4018 unique within Campylobacteraceae or proteins with Campylobacteraceae orthologs of low similarity are labeled/shaded in blue.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2147049&req=5

pone-0001358-g002: Sulfur assimilation and biosynthesis of the sulfur-containing amino acids.Genes/proteins in strain RM4018 unique within Campylobacteraceae or proteins with Campylobacteraceae orthologs of low similarity are labeled/shaded in blue.
Mentions: Arcobacter butzleri strain RM4018 contains a number of genes required for sulfur uptake and assimilation (Figure 2). These genes include those encoding the sulfate ABC transporter CysATW, the sulfate binding protein Sbp, the ATP sulfhydrylase CysDN, the adenosine phosphosulfate (APS) reductase CysH, the sulfite reductase proteins CysI and CysJ and the siroheme synthase CysG. CysD and CysN have been identified also in C. coli, but the position of these genes, along with the APS kinase-encoding gene cysC and the 3′(2′),5′-bisphosphate nucleotidase-encoding gene cysQ, is in the capsular locus, suggesting that these genes in C. coli are involved in the formation or modification of the capsule and not sulfur assimilation per se.

Bottom Line: In addition, the analyses indicated also that a substantial proportion of the A. butzleri genome is devoted to growth and survival under diverse environmental conditions, with a large number of respiration-associated proteins, signal transduction and chemotaxis proteins and proteins involved in DNA repair and adaptation.The presence of pathways and loci associated often with non-host-associated organisms, as well as genes associated with virulence, suggests that A. butzleri is a free-living, water-borne organism that might be classified rightfully as an emerging pathogen.The genome sequence and analyses presented in this study are an important first step in understanding the physiology and genetics of this organism, which constitutes a bridge between the environment and mammalian hosts.

View Article: PubMed Central - PubMed

Affiliation: Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, California, United States of America. bmiller@pw.usda.gov

ABSTRACT

Background: Arcobacter butzleri is a member of the epsilon subdivision of the Proteobacteria and a close taxonomic relative of established pathogens, such as Campylobacter jejuni and Helicobacter pylori. Here we present the complete genome sequence of the human clinical isolate, A. butzleri strain RM4018.

Methodology/principal findings: Arcobacter butzleri is a member of the Campylobacteraceae, but the majority of its proteome is most similar to those of Sulfuromonas denitrificans and Wolinella succinogenes, both members of the Helicobacteraceae, and those of the deep-sea vent Epsilonproteobacteria Sulfurovum and Nitratiruptor. In addition, many of the genes and pathways described here, e.g. those involved in signal transduction and sulfur metabolism, have been identified previously within the epsilon subdivision only in S. denitrificans, W. succinogenes, Sulfurovum, and/or Nitratiruptor, or are unique to the subdivision. In addition, the analyses indicated also that a substantial proportion of the A. butzleri genome is devoted to growth and survival under diverse environmental conditions, with a large number of respiration-associated proteins, signal transduction and chemotaxis proteins and proteins involved in DNA repair and adaptation. To investigate the genomic diversity of A. butzleri strains, we constructed an A. butzleri DNA microarray comprising 2238 genes from strain RM4018. Comparative genomic indexing analysis of 12 additional A. butzleri strains identified both the core genes of A. butzleri and intraspecies hypervariable regions, where <70% of the genes were present in at least two strains.

Conclusion/significance: The presence of pathways and loci associated often with non-host-associated organisms, as well as genes associated with virulence, suggests that A. butzleri is a free-living, water-borne organism that might be classified rightfully as an emerging pathogen. The genome sequence and analyses presented in this study are an important first step in understanding the physiology and genetics of this organism, which constitutes a bridge between the environment and mammalian hosts.

Show MeSH
Related in: MedlinePlus