Limits...
Ultrasound of the small joints of the hands and feet: current status.

McNally EG - Skeletal Radiol. (2007)

Bottom Line: The use of colour flow Doppler studies provides a measure of neovascularisation within the synovial lining of joints and tendons, and within tendons themselves, that is not available with other imaging techniques.Disadvantages compared to MRI include small field of view, poor image presentation, and difficulty in demonstrating cartilage and deep joints in their entirety.Magnetic resonance provides a more uniform and reproducible image for long-term follow-up studies.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, Nuffield Orthopaedic Centre, Old Road, Oxford OX3 7LD, UK. eugene.mcnally@ndos.ox.ac.uk

ABSTRACT
The aim of this article was to review the current status of ultrasound imaging of patients with rheumatological disorders of the hands and feet. Ultrasound machines with high-resolution surface probes are readily available in most radiology departments and can be used to address important clinical questions posed by the rheumatologist and sports and rehabilitation physician. There is increasing evidence that ultrasound detects synovitis that is silent to clinical examination. Detection and classification of synovitis and the early detection of bone erosions are important in clinical decision making. Ultrasound has many advantages over other imaging techniques with which it is compared, particularly magnetic resonance. The ability to carry out a rapid assessment of many widely spaced joints, coupled with clinical correlation, the ability to move and stress musculoskeletal structures and the use of ultrasound to guide therapy accurately are principal amongst these. The use of colour flow Doppler studies provides a measure of neovascularisation within the synovial lining of joints and tendons, and within tendons themselves, that is not available with other imaging techniques. Disadvantages compared to MRI include small field of view, poor image presentation, and difficulty in demonstrating cartilage and deep joints in their entirety. Contrast-enhanced magnetic resonance provides a better measure of capillary permeability and extracellular fluid than does ultrasound. The ability to image simultaneously multiple small joints in the hands and feet and their enhancement characteristics cannot be matched with ultrasound, though future developments in 3-D ultrasound may narrow this gap. Magnetic resonance provides a more uniform and reproducible image for long-term follow-up studies.

Show MeSH

Related in: MedlinePlus

Long-axis (sagittal) view of the plantar aspect of the metatarso-phalangeal joint. The extensor tendon (asterisk) runs over the plantar plate (arrow). MT metatarsal head, PP proximal phalanx
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2141652&req=5

Fig8: Long-axis (sagittal) view of the plantar aspect of the metatarso-phalangeal joint. The extensor tendon (asterisk) runs over the plantar plate (arrow). MT metatarsal head, PP proximal phalanx

Mentions: Normal anatomy On the dorsal aspect of the metatarso-phalangeal joint, extensor digitorum longus and brevis lie superficial to the joint. The extensor digitorum brevis tendon divides into four slips, one to each toe, which run alongside the extensor digitorum longus tendon before inserting into it. The longus tendon itself inserts into the dorsal aspects of the middle and distal phalanges, via the dorsal digital expansions. The dorsal digital expansions have three slips, one central and two collateral. The central slip inserts into the base of the middle phalanx. The collateral slips pass on either side of the inserting central slip and receive reinforcement from the interosseus muscles, the extensor digitorum brevis and the lumbricals. Deep to the extensor tendons, the metatarso-phalangeal joints are reinforced by collateral ligaments that run from dorsal to plantar, crossing the radial and ulnar aspects of the joint. These are difficult to identify individually.Flexor digitorum longus and brevis tendons lie on the plantar aspect of the forefoot. The flexor digitorum brevis divides into four tendons, one to each of the lateral four toes, and each of these in turn splits into two at the level of the base of the proximal phalanx. The two divisions reunite before dividing again to attach on either side of the middle phalanx. The first division of this tendon is to allow the deeper flexor digitorum longus to pass distally. The tendon sheaths are fibrous tunnels, reinforced by annular and cribriform condensations mimicking the pulleys of the fingers. Running between the metatarso-phalangeal joints are fibrous condensations termed transverse metatarsal bands. Taken as a unit, these are often referred to as the deep transverse metatarsal ligament. Lying directly on the plantar aspect of the joint capsule are the plantar plates (Fig. 8), which are similar to the volar plates of the upper limb. On their deep surface, these blend with the joint capsule. The plantar plates are firmly attached distally to the base of the proximal phalanges. Proximally, there is a rather loose attachment just proximal to the articular cartilage of the head of the metatarsal.Fig. 8


Ultrasound of the small joints of the hands and feet: current status.

McNally EG - Skeletal Radiol. (2007)

Long-axis (sagittal) view of the plantar aspect of the metatarso-phalangeal joint. The extensor tendon (asterisk) runs over the plantar plate (arrow). MT metatarsal head, PP proximal phalanx
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2141652&req=5

Fig8: Long-axis (sagittal) view of the plantar aspect of the metatarso-phalangeal joint. The extensor tendon (asterisk) runs over the plantar plate (arrow). MT metatarsal head, PP proximal phalanx
Mentions: Normal anatomy On the dorsal aspect of the metatarso-phalangeal joint, extensor digitorum longus and brevis lie superficial to the joint. The extensor digitorum brevis tendon divides into four slips, one to each toe, which run alongside the extensor digitorum longus tendon before inserting into it. The longus tendon itself inserts into the dorsal aspects of the middle and distal phalanges, via the dorsal digital expansions. The dorsal digital expansions have three slips, one central and two collateral. The central slip inserts into the base of the middle phalanx. The collateral slips pass on either side of the inserting central slip and receive reinforcement from the interosseus muscles, the extensor digitorum brevis and the lumbricals. Deep to the extensor tendons, the metatarso-phalangeal joints are reinforced by collateral ligaments that run from dorsal to plantar, crossing the radial and ulnar aspects of the joint. These are difficult to identify individually.Flexor digitorum longus and brevis tendons lie on the plantar aspect of the forefoot. The flexor digitorum brevis divides into four tendons, one to each of the lateral four toes, and each of these in turn splits into two at the level of the base of the proximal phalanx. The two divisions reunite before dividing again to attach on either side of the middle phalanx. The first division of this tendon is to allow the deeper flexor digitorum longus to pass distally. The tendon sheaths are fibrous tunnels, reinforced by annular and cribriform condensations mimicking the pulleys of the fingers. Running between the metatarso-phalangeal joints are fibrous condensations termed transverse metatarsal bands. Taken as a unit, these are often referred to as the deep transverse metatarsal ligament. Lying directly on the plantar aspect of the joint capsule are the plantar plates (Fig. 8), which are similar to the volar plates of the upper limb. On their deep surface, these blend with the joint capsule. The plantar plates are firmly attached distally to the base of the proximal phalanges. Proximally, there is a rather loose attachment just proximal to the articular cartilage of the head of the metatarsal.Fig. 8

Bottom Line: The use of colour flow Doppler studies provides a measure of neovascularisation within the synovial lining of joints and tendons, and within tendons themselves, that is not available with other imaging techniques.Disadvantages compared to MRI include small field of view, poor image presentation, and difficulty in demonstrating cartilage and deep joints in their entirety.Magnetic resonance provides a more uniform and reproducible image for long-term follow-up studies.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, Nuffield Orthopaedic Centre, Old Road, Oxford OX3 7LD, UK. eugene.mcnally@ndos.ox.ac.uk

ABSTRACT
The aim of this article was to review the current status of ultrasound imaging of patients with rheumatological disorders of the hands and feet. Ultrasound machines with high-resolution surface probes are readily available in most radiology departments and can be used to address important clinical questions posed by the rheumatologist and sports and rehabilitation physician. There is increasing evidence that ultrasound detects synovitis that is silent to clinical examination. Detection and classification of synovitis and the early detection of bone erosions are important in clinical decision making. Ultrasound has many advantages over other imaging techniques with which it is compared, particularly magnetic resonance. The ability to carry out a rapid assessment of many widely spaced joints, coupled with clinical correlation, the ability to move and stress musculoskeletal structures and the use of ultrasound to guide therapy accurately are principal amongst these. The use of colour flow Doppler studies provides a measure of neovascularisation within the synovial lining of joints and tendons, and within tendons themselves, that is not available with other imaging techniques. Disadvantages compared to MRI include small field of view, poor image presentation, and difficulty in demonstrating cartilage and deep joints in their entirety. Contrast-enhanced magnetic resonance provides a better measure of capillary permeability and extracellular fluid than does ultrasound. The ability to image simultaneously multiple small joints in the hands and feet and their enhancement characteristics cannot be matched with ultrasound, though future developments in 3-D ultrasound may narrow this gap. Magnetic resonance provides a more uniform and reproducible image for long-term follow-up studies.

Show MeSH
Related in: MedlinePlus