Limits...
Is reduced female survival after mating a by-product of male-male competition in the dung fly Sepsis cynipsea?

Teuschl Y, Hosken DJ, Blanckenhorn WU - BMC Evol. Biol. (2007)

Bottom Line: Additionally, family identity significantly influenced male copulation success.Our results indicate a heritable component of some yet unspecified male trait(s) that influence harm and mating success.We therefore found no support for harm being a side effect of traits favoured in pre-copulatory male-male competition.

View Article: PubMed Central - HTML - PubMed

Affiliation: Zoologisches Museum, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. yteuschl@yahoo.com

ABSTRACT

Background: In a number of species males damage females during copulation, but the reasons for this remain unclear. It may be that males are trying to manipulate female mating behaviour or their life histories. Alternatively, damage may be a side-effect of male-male competition. In the black scavenger or dung fly Sepsis cynipsea (Diptera: Sepsidae) mating reduces female survival, apparently because males wound females during copulation. However, this damage does not seem to relate to attempted manipulation of female reproduction by males. Here we tested the hypothesis that harming females during mating is an incidental by-product of characters favoured during pre-copulatory male-male competition. We assessed whether males and their sons vary genetically in their ability to obtain matings and harm females, and whether more successful males were also more damaging. We did this by ranking males' mating success in paired competitions across several females whose longevity under starvation was subsequently measured.

Results: As previously reported, our results show mating is costly for female S. cynipsea. However, variance in female longevity was not explained by male identity, family, body size, number of previous copulations, or copulation duration. Nevertheless, there was a positive correlation between the harm fathers inflicted on their mates (affecting female longevity) and the harm sons inflicted on theirs. Additionally, family identity significantly influenced male copulation success.

Conclusion: Our results indicate a heritable component of some yet unspecified male trait(s) that influence harm and mating success. However, there was no relationship between copulation success of fathers or sons and the mean longevity of their mates. We therefore found no support for harm being a side effect of traits favoured in pre-copulatory male-male competition.

Show MeSH

Related in: MedlinePlus

Family-mean regressions of (a) (square-root-transformed) residual longevity (in h) of fathers' mates on that of their sons' mates at 12°C (white circles) and 25°C (black squares), and of (b) the cumulative copulation success of fathers on the cumulative copulation success of their sons (at 25°C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2140061&req=5

Figure 2: Family-mean regressions of (a) (square-root-transformed) residual longevity (in h) of fathers' mates on that of their sons' mates at 12°C (white circles) and 25°C (black squares), and of (b) the cumulative copulation success of fathers on the cumulative copulation success of their sons (at 25°C).

Mentions: To investigate a possible heritability of harming females, mean residual longevity of all the mates of fathers and those of sons was compared in a parent-offspring regression including temperature treatment as a factor. There was a marginal overall relationship (F1,55 = 3.95; p = 0.052; Fig. 2a), caused by a strong and significant correlation in the 25°C treatment (r = 0.382; heritability h2 = 0.73 ± 0.35 (SE)), while the association was weaker in the 12°C treatment (r = 0.199; h2 = 0.60 ± 0.58).


Is reduced female survival after mating a by-product of male-male competition in the dung fly Sepsis cynipsea?

Teuschl Y, Hosken DJ, Blanckenhorn WU - BMC Evol. Biol. (2007)

Family-mean regressions of (a) (square-root-transformed) residual longevity (in h) of fathers' mates on that of their sons' mates at 12°C (white circles) and 25°C (black squares), and of (b) the cumulative copulation success of fathers on the cumulative copulation success of their sons (at 25°C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2140061&req=5

Figure 2: Family-mean regressions of (a) (square-root-transformed) residual longevity (in h) of fathers' mates on that of their sons' mates at 12°C (white circles) and 25°C (black squares), and of (b) the cumulative copulation success of fathers on the cumulative copulation success of their sons (at 25°C).
Mentions: To investigate a possible heritability of harming females, mean residual longevity of all the mates of fathers and those of sons was compared in a parent-offspring regression including temperature treatment as a factor. There was a marginal overall relationship (F1,55 = 3.95; p = 0.052; Fig. 2a), caused by a strong and significant correlation in the 25°C treatment (r = 0.382; heritability h2 = 0.73 ± 0.35 (SE)), while the association was weaker in the 12°C treatment (r = 0.199; h2 = 0.60 ± 0.58).

Bottom Line: Additionally, family identity significantly influenced male copulation success.Our results indicate a heritable component of some yet unspecified male trait(s) that influence harm and mating success.We therefore found no support for harm being a side effect of traits favoured in pre-copulatory male-male competition.

View Article: PubMed Central - HTML - PubMed

Affiliation: Zoologisches Museum, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. yteuschl@yahoo.com

ABSTRACT

Background: In a number of species males damage females during copulation, but the reasons for this remain unclear. It may be that males are trying to manipulate female mating behaviour or their life histories. Alternatively, damage may be a side-effect of male-male competition. In the black scavenger or dung fly Sepsis cynipsea (Diptera: Sepsidae) mating reduces female survival, apparently because males wound females during copulation. However, this damage does not seem to relate to attempted manipulation of female reproduction by males. Here we tested the hypothesis that harming females during mating is an incidental by-product of characters favoured during pre-copulatory male-male competition. We assessed whether males and their sons vary genetically in their ability to obtain matings and harm females, and whether more successful males were also more damaging. We did this by ranking males' mating success in paired competitions across several females whose longevity under starvation was subsequently measured.

Results: As previously reported, our results show mating is costly for female S. cynipsea. However, variance in female longevity was not explained by male identity, family, body size, number of previous copulations, or copulation duration. Nevertheless, there was a positive correlation between the harm fathers inflicted on their mates (affecting female longevity) and the harm sons inflicted on theirs. Additionally, family identity significantly influenced male copulation success.

Conclusion: Our results indicate a heritable component of some yet unspecified male trait(s) that influence harm and mating success. However, there was no relationship between copulation success of fathers or sons and the mean longevity of their mates. We therefore found no support for harm being a side effect of traits favoured in pre-copulatory male-male competition.

Show MeSH
Related in: MedlinePlus