Limits...
Substrate recognition by osteoclast precursors induces C-src/microtubule association.

Abu-Amer Y, Ross FP, Schlesinger P, Tondravi MM, Teitelbaum SL - J. Cell Biol. (1997)

Bottom Line: In vitro kinase assay demonstrates tubulin-associated c-src is enzymatically active, phosphorylating itself as well as exogenous substrate.The increase in microtubule-associated kinase activity attending adhesion mirrors tubulin-bound c-src and does not reflect enhanced specific activity.Association of the two proteins does not depend upon protein tyrosine phosphorylation and is substrate specific, as it is induced by vitronectin and fibronectin but not type 1 collagen.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

ABSTRACT
The osteoclast is distinguished from other macrophage polykaryons by its polarization, a feature induced by substrate recognition. The most striking component of the polarized osteoclast is its ruffled membrane, probably reflecting insertion of intracellular vesicles into the bone apposed plasmalemma. The failure of osteoclasts in c-src-/- osteopetrotic mice to form ruffled membranes indicates pp60(c-src) (c-src) is essential to osteoclast polarization. Interestingly, c-src itself is a vesicular protein that targets the ruffled membrane. This being the case, we hypothesized that matrix recognition by osteoclasts, and their precursors, induces c-src to associate with microtubules that traffic proteins to the cell surface. We find abundant c-src associates with tubulin immunoprecipitated from avian marrow macrophages (osteoclast precursors) maintained in the adherent, but not nonadherent, state. Since the two proteins colocalize only within adherent avian osteoclast-like cells examined by double antibody immunoconfocal microscopy, c-src/tubulin association reflects an authentic intracellular event. C-src/tubulin association is evident within 90 min of cell-substrate recognition, and the event does not reflect increased expression of either protein. In vitro kinase assay demonstrates tubulin-associated c-src is enzymatically active, phosphorylating itself as well as exogenous substrate. The increase in microtubule-associated kinase activity attending adhesion mirrors tubulin-bound c-src and does not reflect enhanced specific activity. The fact that microtubule-dissociating drugs, as well as cold, prevent adherence-induced c-src/tubulin association indicates the protooncogene complexes primarily, if not exclusively, with polymerized tubulin. Association of the two proteins does not depend upon protein tyrosine phosphorylation and is substrate specific, as it is induced by vitronectin and fibronectin but not type 1 collagen. Finally, consistent with cotransport of c-src and the osteoclast vacuolar proton pump to the polarized plasmalemma, the H+-ATPase decorates microtubules in a manner similar to the protooncogene, specifically coimmunoprecipitates with c-src from the osteoclast light Golgi membrane fraction, and is present, with c-src, in preparations enriched with acidifying vesicles reconstituted from the osteoclast ruffled membrane.

Show MeSH

Related in: MedlinePlus

C-src localization with acidifying vesicle preparation from authentic osteoclasts. Acidifying membrane  vesicles were isolated from authentic  osteoclasts and lysed, and the lysate  was probed, by immunoblot, with anti– c-src and H+-ATPase antibodies.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2139850&req=5

Figure 17: C-src localization with acidifying vesicle preparation from authentic osteoclasts. Acidifying membrane vesicles were isolated from authentic osteoclasts and lysed, and the lysate was probed, by immunoblot, with anti– c-src and H+-ATPase antibodies.

Mentions: We previously reported techniques of isolating protontransporting vesicles, the majority being ruffled membranederived, from mature chicken–isolated osteoclasts (8). To determine if these membranes, known to contain the vacuolar proton pump (8), also accommodate c-src, the fraction was lysed, and the lysate was subjected to immunoblot with anti–c-src and H+-ATPase antibodies. As seen in Fig. 17, this membrane fraction, rich in authentic acidifying vesicles, contains both proteins.


Substrate recognition by osteoclast precursors induces C-src/microtubule association.

Abu-Amer Y, Ross FP, Schlesinger P, Tondravi MM, Teitelbaum SL - J. Cell Biol. (1997)

C-src localization with acidifying vesicle preparation from authentic osteoclasts. Acidifying membrane  vesicles were isolated from authentic  osteoclasts and lysed, and the lysate  was probed, by immunoblot, with anti– c-src and H+-ATPase antibodies.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2139850&req=5

Figure 17: C-src localization with acidifying vesicle preparation from authentic osteoclasts. Acidifying membrane vesicles were isolated from authentic osteoclasts and lysed, and the lysate was probed, by immunoblot, with anti– c-src and H+-ATPase antibodies.
Mentions: We previously reported techniques of isolating protontransporting vesicles, the majority being ruffled membranederived, from mature chicken–isolated osteoclasts (8). To determine if these membranes, known to contain the vacuolar proton pump (8), also accommodate c-src, the fraction was lysed, and the lysate was subjected to immunoblot with anti–c-src and H+-ATPase antibodies. As seen in Fig. 17, this membrane fraction, rich in authentic acidifying vesicles, contains both proteins.

Bottom Line: In vitro kinase assay demonstrates tubulin-associated c-src is enzymatically active, phosphorylating itself as well as exogenous substrate.The increase in microtubule-associated kinase activity attending adhesion mirrors tubulin-bound c-src and does not reflect enhanced specific activity.Association of the two proteins does not depend upon protein tyrosine phosphorylation and is substrate specific, as it is induced by vitronectin and fibronectin but not type 1 collagen.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

ABSTRACT
The osteoclast is distinguished from other macrophage polykaryons by its polarization, a feature induced by substrate recognition. The most striking component of the polarized osteoclast is its ruffled membrane, probably reflecting insertion of intracellular vesicles into the bone apposed plasmalemma. The failure of osteoclasts in c-src-/- osteopetrotic mice to form ruffled membranes indicates pp60(c-src) (c-src) is essential to osteoclast polarization. Interestingly, c-src itself is a vesicular protein that targets the ruffled membrane. This being the case, we hypothesized that matrix recognition by osteoclasts, and their precursors, induces c-src to associate with microtubules that traffic proteins to the cell surface. We find abundant c-src associates with tubulin immunoprecipitated from avian marrow macrophages (osteoclast precursors) maintained in the adherent, but not nonadherent, state. Since the two proteins colocalize only within adherent avian osteoclast-like cells examined by double antibody immunoconfocal microscopy, c-src/tubulin association reflects an authentic intracellular event. C-src/tubulin association is evident within 90 min of cell-substrate recognition, and the event does not reflect increased expression of either protein. In vitro kinase assay demonstrates tubulin-associated c-src is enzymatically active, phosphorylating itself as well as exogenous substrate. The increase in microtubule-associated kinase activity attending adhesion mirrors tubulin-bound c-src and does not reflect enhanced specific activity. The fact that microtubule-dissociating drugs, as well as cold, prevent adherence-induced c-src/tubulin association indicates the protooncogene complexes primarily, if not exclusively, with polymerized tubulin. Association of the two proteins does not depend upon protein tyrosine phosphorylation and is substrate specific, as it is induced by vitronectin and fibronectin but not type 1 collagen. Finally, consistent with cotransport of c-src and the osteoclast vacuolar proton pump to the polarized plasmalemma, the H+-ATPase decorates microtubules in a manner similar to the protooncogene, specifically coimmunoprecipitates with c-src from the osteoclast light Golgi membrane fraction, and is present, with c-src, in preparations enriched with acidifying vesicles reconstituted from the osteoclast ruffled membrane.

Show MeSH
Related in: MedlinePlus