Limits...
Dissociation of FAK/p130(CAS)/c-Src complex during mitosis: role of mitosis-specific serine phosphorylation of FAK.

Yamakita Y, Totsukawa G, Yamashiro S, Fry D, Zhang X, Hanks SK, Matsumura F - J. Cell Biol. (1999)

Bottom Line: We have found two significant alterations in FAK-mediated signal transduction during mitosis.Second, mitotic FAK shows decreased binding to a peptide mimicking the cytoplasmic domain of beta-integrin when compared with FAK of interphase cells.These results suggest that mitosis-specific modification of FAK uncouples signal transduction pathways involving integrin, CAS, and c-Src, and may maintain FAK in an inactive state until post-mitotic spreading.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Biology and Biochemistry, Rutgers University, Nelson Labs, Piscataway, New Jersey 08855, USA.

ABSTRACT
At mitosis, focal adhesions disassemble and the signal transduction from focal adhesions is inactivated. We have found that components of focal adhesions including focal adhesion kinase (FAK), paxillin, and p130(CAS) (CAS) are serine/threonine phosphorylated during mitosis when all three proteins are tyrosine dephosphorylated. Mitosis-specific phosphorylation continues past cytokinesis and is reversed during post-mitotic cell spreading. We have found two significant alterations in FAK-mediated signal transduction during mitosis. First, the association of FAK with CAS or c-Src is greatly inhibited, with levels decreasing to 16 and 13% of the interphase levels, respectively. Second, mitotic FAK shows decreased binding to a peptide mimicking the cytoplasmic domain of beta-integrin when compared with FAK of interphase cells. Mitosis-specific phosphorylation is responsible for the disruption of FAK/CAS binding because dephosphorylation of mitotic FAK in vitro by protein serine/threonine phosphatase 1 restores the ability of FAK to associate with CAS, though not with c-Src. These results suggest that mitosis-specific modification of FAK uncouples signal transduction pathways involving integrin, CAS, and c-Src, and may maintain FAK in an inactive state until post-mitotic spreading.

Show MeSH

Related in: MedlinePlus

Mitosis-specific modification of CAS, FAK, and paxillin. CAS,  FAK, and paxillin (PAX) were immunoprecipitated under condition I from  trypsinized (lane T), mitotic (lane M),  and interphase (lane I) cells and immunoblotted with the specific antibodies  against each protein. All three proteins  show slower electrophoretic mobility  during mitosis, indicating that FAK,  CAS, and paxillin undergo mitosis-specific modification.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2132894&req=5

Figure 1: Mitosis-specific modification of CAS, FAK, and paxillin. CAS, FAK, and paxillin (PAX) were immunoprecipitated under condition I from trypsinized (lane T), mitotic (lane M), and interphase (lane I) cells and immunoblotted with the specific antibodies against each protein. All three proteins show slower electrophoretic mobility during mitosis, indicating that FAK, CAS, and paxillin undergo mitosis-specific modification.

Mentions: We observed that FAK, CAS, and paxillin showed SDS-PAGE mobility shifts during mitosis. FAK, CAS, and paxillin were immunoprecipitated under condition I from mitotic, interphase, or trypsinized cells, and immunoblotted with specific antibodies. Fig. 1 shows all three proteins of mitotic cells (lane M) showed slower mobilities than their counterparts from interphase and trypsinized cells (lanes I and T, respectively), indicating that these proteins are modified specifically during mitosis. Essentially the same mobility shifts were observed when these proteins were immunoprecipitated under other conditions (II or III, data not shown).


Dissociation of FAK/p130(CAS)/c-Src complex during mitosis: role of mitosis-specific serine phosphorylation of FAK.

Yamakita Y, Totsukawa G, Yamashiro S, Fry D, Zhang X, Hanks SK, Matsumura F - J. Cell Biol. (1999)

Mitosis-specific modification of CAS, FAK, and paxillin. CAS,  FAK, and paxillin (PAX) were immunoprecipitated under condition I from  trypsinized (lane T), mitotic (lane M),  and interphase (lane I) cells and immunoblotted with the specific antibodies  against each protein. All three proteins  show slower electrophoretic mobility  during mitosis, indicating that FAK,  CAS, and paxillin undergo mitosis-specific modification.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2132894&req=5

Figure 1: Mitosis-specific modification of CAS, FAK, and paxillin. CAS, FAK, and paxillin (PAX) were immunoprecipitated under condition I from trypsinized (lane T), mitotic (lane M), and interphase (lane I) cells and immunoblotted with the specific antibodies against each protein. All three proteins show slower electrophoretic mobility during mitosis, indicating that FAK, CAS, and paxillin undergo mitosis-specific modification.
Mentions: We observed that FAK, CAS, and paxillin showed SDS-PAGE mobility shifts during mitosis. FAK, CAS, and paxillin were immunoprecipitated under condition I from mitotic, interphase, or trypsinized cells, and immunoblotted with specific antibodies. Fig. 1 shows all three proteins of mitotic cells (lane M) showed slower mobilities than their counterparts from interphase and trypsinized cells (lanes I and T, respectively), indicating that these proteins are modified specifically during mitosis. Essentially the same mobility shifts were observed when these proteins were immunoprecipitated under other conditions (II or III, data not shown).

Bottom Line: We have found two significant alterations in FAK-mediated signal transduction during mitosis.Second, mitotic FAK shows decreased binding to a peptide mimicking the cytoplasmic domain of beta-integrin when compared with FAK of interphase cells.These results suggest that mitosis-specific modification of FAK uncouples signal transduction pathways involving integrin, CAS, and c-Src, and may maintain FAK in an inactive state until post-mitotic spreading.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Biology and Biochemistry, Rutgers University, Nelson Labs, Piscataway, New Jersey 08855, USA.

ABSTRACT
At mitosis, focal adhesions disassemble and the signal transduction from focal adhesions is inactivated. We have found that components of focal adhesions including focal adhesion kinase (FAK), paxillin, and p130(CAS) (CAS) are serine/threonine phosphorylated during mitosis when all three proteins are tyrosine dephosphorylated. Mitosis-specific phosphorylation continues past cytokinesis and is reversed during post-mitotic cell spreading. We have found two significant alterations in FAK-mediated signal transduction during mitosis. First, the association of FAK with CAS or c-Src is greatly inhibited, with levels decreasing to 16 and 13% of the interphase levels, respectively. Second, mitotic FAK shows decreased binding to a peptide mimicking the cytoplasmic domain of beta-integrin when compared with FAK of interphase cells. Mitosis-specific phosphorylation is responsible for the disruption of FAK/CAS binding because dephosphorylation of mitotic FAK in vitro by protein serine/threonine phosphatase 1 restores the ability of FAK to associate with CAS, though not with c-Src. These results suggest that mitosis-specific modification of FAK uncouples signal transduction pathways involving integrin, CAS, and c-Src, and may maintain FAK in an inactive state until post-mitotic spreading.

Show MeSH
Related in: MedlinePlus