Limits...
Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes.

Yang CD, Liao JT, Lai CY, Jong MH, Liang CM, Lin YL, Lin NS, Hsu YH, Liang SM - BMC Biotechnol. (2007)

Bottom Line: Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies.Furthermore, all BVP1-immunized swine were protected against FMDV challenge.This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

View Article: PubMed Central - HTML - PubMed

Affiliation: Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. toxogondii@yahoo.com.tw

ABSTRACT

Background: Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV), that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects.

Methods: We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s) of the capsid protein VP1 of foot-and-mouth disease virus (FMDV). The recombinant BaMV plasmid (pBVP1) was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164) of FMDV VP1.

Results: The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-gamma. Furthermore, all BVP1-immunized swine were protected against FMDV challenge.

Conclusion: Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

Show MeSH

Related in: MedlinePlus

Schematic representation of plasmids of wild-type BaMV-S as well as recombinant pBS-d35CP and pBVP1. (a) pBaMV-S is an infectious BaMV cDNA plasmid under the control of cauliflower mosaic virus 35S promoter. The BaMV genome comprises 5 open reading frames (ORFs). The ORF1 encodes for viral replicase, whereas ORF2, ORF3 and ORF4 are called a "Triple-gene-block" that encodes viral movement proteins. ORF5 (CP) encodes a structural protein for virion formation. (b) pBS-d35CP is a mutated BaMV plasmid whose DNA coding for the N-terminal 35 amino acids of CP has been truncated, and multiple cloning sites have been engineered. (c) pBVP1 is a recombinant plasmid derived from pBS-d35CP by inserting the DNA coding for the 37 amino acid VP1 peptide to replace that coding for the N-terminal 35 amino acids of CP.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2117009&req=5

Figure 1: Schematic representation of plasmids of wild-type BaMV-S as well as recombinant pBS-d35CP and pBVP1. (a) pBaMV-S is an infectious BaMV cDNA plasmid under the control of cauliflower mosaic virus 35S promoter. The BaMV genome comprises 5 open reading frames (ORFs). The ORF1 encodes for viral replicase, whereas ORF2, ORF3 and ORF4 are called a "Triple-gene-block" that encodes viral movement proteins. ORF5 (CP) encodes a structural protein for virion formation. (b) pBS-d35CP is a mutated BaMV plasmid whose DNA coding for the N-terminal 35 amino acids of CP has been truncated, and multiple cloning sites have been engineered. (c) pBVP1 is a recombinant plasmid derived from pBS-d35CP by inserting the DNA coding for the 37 amino acid VP1 peptide to replace that coding for the N-terminal 35 amino acids of CP.

Mentions: The full-length infectious cDNA of BaMV-S with an upstream cauliflower mosaic virus 35S promoter sequence was cloned in the plasmid pUC119 (Fig. 1a) as described previously [27]. A vector pBS-d35CP was derived from the aforementioned pBaMV-S plasmid by deletion of the N-terminal 35 amino acid sequence of CP and insertion of multiple cloning sites (AgeI-NheI-NotI) by PCR (Fig. 1b). A sequence corresponding to amino acids 128–164 of VP1 of FMDV serotype O/Taiwan/97 was inserted into pBS-d35CP by PCR with the plasmid pVP1/Q15 used as a template [28]. The primers used were pr128164N (5'-GGgctagcAccatggACACCGTCTACAACGGGAG-3'; the sequence in small letters represents the sequentially ordered NheI and NcoI sites; the NcoI recognition sequence provided an AUG initiation codon) and pr128164C (5'-TTgcggccgcGTTGAAGGAGGTAGGC-3'; the sequence in small letters represents a NotI site). PCR was carried out at an initial temperature of 94°C for 5 min followed by 25 cycles of 94°C for 30 s, 50°C for 30 s and an extension at 72°C for 30 s. The amplified fragment encoding VP1 peptide was purified, sequenced and cloned into plasmid pBS-d35CP at the NheI and NotI sites. The sequence of the new plasmid was confirmed and denoted as pBVP1 (Fig. 1c).


Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes.

Yang CD, Liao JT, Lai CY, Jong MH, Liang CM, Lin YL, Lin NS, Hsu YH, Liang SM - BMC Biotechnol. (2007)

Schematic representation of plasmids of wild-type BaMV-S as well as recombinant pBS-d35CP and pBVP1. (a) pBaMV-S is an infectious BaMV cDNA plasmid under the control of cauliflower mosaic virus 35S promoter. The BaMV genome comprises 5 open reading frames (ORFs). The ORF1 encodes for viral replicase, whereas ORF2, ORF3 and ORF4 are called a "Triple-gene-block" that encodes viral movement proteins. ORF5 (CP) encodes a structural protein for virion formation. (b) pBS-d35CP is a mutated BaMV plasmid whose DNA coding for the N-terminal 35 amino acids of CP has been truncated, and multiple cloning sites have been engineered. (c) pBVP1 is a recombinant plasmid derived from pBS-d35CP by inserting the DNA coding for the 37 amino acid VP1 peptide to replace that coding for the N-terminal 35 amino acids of CP.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2117009&req=5

Figure 1: Schematic representation of plasmids of wild-type BaMV-S as well as recombinant pBS-d35CP and pBVP1. (a) pBaMV-S is an infectious BaMV cDNA plasmid under the control of cauliflower mosaic virus 35S promoter. The BaMV genome comprises 5 open reading frames (ORFs). The ORF1 encodes for viral replicase, whereas ORF2, ORF3 and ORF4 are called a "Triple-gene-block" that encodes viral movement proteins. ORF5 (CP) encodes a structural protein for virion formation. (b) pBS-d35CP is a mutated BaMV plasmid whose DNA coding for the N-terminal 35 amino acids of CP has been truncated, and multiple cloning sites have been engineered. (c) pBVP1 is a recombinant plasmid derived from pBS-d35CP by inserting the DNA coding for the 37 amino acid VP1 peptide to replace that coding for the N-terminal 35 amino acids of CP.
Mentions: The full-length infectious cDNA of BaMV-S with an upstream cauliflower mosaic virus 35S promoter sequence was cloned in the plasmid pUC119 (Fig. 1a) as described previously [27]. A vector pBS-d35CP was derived from the aforementioned pBaMV-S plasmid by deletion of the N-terminal 35 amino acid sequence of CP and insertion of multiple cloning sites (AgeI-NheI-NotI) by PCR (Fig. 1b). A sequence corresponding to amino acids 128–164 of VP1 of FMDV serotype O/Taiwan/97 was inserted into pBS-d35CP by PCR with the plasmid pVP1/Q15 used as a template [28]. The primers used were pr128164N (5'-GGgctagcAccatggACACCGTCTACAACGGGAG-3'; the sequence in small letters represents the sequentially ordered NheI and NcoI sites; the NcoI recognition sequence provided an AUG initiation codon) and pr128164C (5'-TTgcggccgcGTTGAAGGAGGTAGGC-3'; the sequence in small letters represents a NotI site). PCR was carried out at an initial temperature of 94°C for 5 min followed by 25 cycles of 94°C for 30 s, 50°C for 30 s and an extension at 72°C for 30 s. The amplified fragment encoding VP1 peptide was purified, sequenced and cloned into plasmid pBS-d35CP at the NheI and NotI sites. The sequence of the new plasmid was confirmed and denoted as pBVP1 (Fig. 1c).

Bottom Line: Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies.Furthermore, all BVP1-immunized swine were protected against FMDV challenge.This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

View Article: PubMed Central - HTML - PubMed

Affiliation: Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. toxogondii@yahoo.com.tw

ABSTRACT

Background: Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV), that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects.

Methods: We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s) of the capsid protein VP1 of foot-and-mouth disease virus (FMDV). The recombinant BaMV plasmid (pBVP1) was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164) of FMDV VP1.

Results: The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-gamma. Furthermore, all BVP1-immunized swine were protected against FMDV challenge.

Conclusion: Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

Show MeSH
Related in: MedlinePlus