Limits...
Independently evolving species in asexual bdelloid rotifers.

Fontaneto D, Herniou EA, Boschetti C, Caprioli M, Melone G, Ricci C, Barraclough TG - PLoS Biol. (2007)

Bottom Line: Some of the morphologically coherent groups experiencing divergent selection contain several genetic clusters, in common with findings of cryptic species in sexual organisms.Our results show that the main causes of speciation in sexual organisms, population isolation and divergent selection, have the same qualitative effects in an asexual clade.The study also demonstrates how combined molecular and morphological analyses can shed new light on the evolutionary nature of species.

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Biologia, Università di Milano, Milan, Italy.

ABSTRACT
Asexuals are an important test case for theories of why species exist. If asexual clades displayed the same pattern of discrete variation as sexual clades, this would challenge the traditional view that sex is necessary for diversification into species. However, critical evidence has been lacking: all putative examples have involved organisms with recent or ongoing histories of recombination and have relied on visual interpretation of patterns of genetic and phenotypic variation rather than on formal tests of alternative evolutionary scenarios. Here we show that a classic asexual clade, the bdelloid rotifers, has diversified into distinct evolutionary species. Intensive sampling of the genus Rotaria reveals the presence of well-separated genetic clusters indicative of independent evolution. Moreover, combined genetic and morphological analyses reveal divergent selection in feeding morphology, indicative of niche divergence. Some of the morphologically coherent groups experiencing divergent selection contain several genetic clusters, in common with findings of cryptic species in sexual organisms. Our results show that the main causes of speciation in sexual organisms, population isolation and divergent selection, have the same qualitative effects in an asexual clade. The study also demonstrates how combined molecular and morphological analyses can shed new light on the evolutionary nature of species.

Show MeSH
Phylogenetic Relationships in the Genus RotariaThe consensus of 80,000 sampled trees from Bayesian analysis of the combined cox1 and 28S rDNA data sets is shown, displaying all compatible groupings and with average branch lengths proportional to numbers of substitutions per site under a separate GTR + invgamma substitution model for the cox1 and 28S partitions. Posterior probabilities above 0.5 and bootstrap support above 50% from a maximum parsimony bootstrap analysis are shown above and below each branch, respectively. Support values for within-species relationships are not shown for very short branches but are shown in Figures S1 through S3. Closed circles indicate clusters identified by the clustering analysis. Colors represent traditional species memberships. Diamonds indicate taxonomic species and monophyletic groups of Rotaria. Names refer to the species, the country, the number of site within that country for that species, and the number of individual from that site if several were isolated; for example, R.macr.IT.1.1 refers to the first individual from site 1 in Italy for R. macrura. Pictures of trophi from one individual from each cluster are shown to scale: Representatives of all sampled populations are shown in Figure S4. A full list of names and localities of samples is available in Table S1.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC1828144&req=5

pbio-0050087-g003: Phylogenetic Relationships in the Genus RotariaThe consensus of 80,000 sampled trees from Bayesian analysis of the combined cox1 and 28S rDNA data sets is shown, displaying all compatible groupings and with average branch lengths proportional to numbers of substitutions per site under a separate GTR + invgamma substitution model for the cox1 and 28S partitions. Posterior probabilities above 0.5 and bootstrap support above 50% from a maximum parsimony bootstrap analysis are shown above and below each branch, respectively. Support values for within-species relationships are not shown for very short branches but are shown in Figures S1 through S3. Closed circles indicate clusters identified by the clustering analysis. Colors represent traditional species memberships. Diamonds indicate taxonomic species and monophyletic groups of Rotaria. Names refer to the species, the country, the number of site within that country for that species, and the number of individual from that site if several were isolated; for example, R.macr.IT.1.1 refers to the first individual from site 1 in Italy for R. macrura. Pictures of trophi from one individual from each cluster are shown to scale: Representatives of all sampled populations are shown in Figure S4. A full list of names and localities of samples is available in Table S1.

Mentions: We collected all individuals of Rotaria encountered during 3 y searching rivers, standing water, dry mosses, and lichens, centered on Italy and the United Kingdom but also globally [35]. Individuals were identified to belong to nine taxonomic species (Tables S1 and S2). Most of the described species of Rotaria missing from our sample are known from only one record or are very rarely encountered (Protocol S1). Bayesian and maximum parsimony analyses of mitochondrial cytochrome oxidase I (cox1) and nuclear 28S ribosomal DNA sequences provide strong support for the monophyly of taxonomic species (Figures 3, S1, S2, and S3 and Text S1), with the sole exception of R. rotatoria, which was already suspected to comprise a species complex based on disagreements among authors [36,37].


Independently evolving species in asexual bdelloid rotifers.

Fontaneto D, Herniou EA, Boschetti C, Caprioli M, Melone G, Ricci C, Barraclough TG - PLoS Biol. (2007)

Phylogenetic Relationships in the Genus RotariaThe consensus of 80,000 sampled trees from Bayesian analysis of the combined cox1 and 28S rDNA data sets is shown, displaying all compatible groupings and with average branch lengths proportional to numbers of substitutions per site under a separate GTR + invgamma substitution model for the cox1 and 28S partitions. Posterior probabilities above 0.5 and bootstrap support above 50% from a maximum parsimony bootstrap analysis are shown above and below each branch, respectively. Support values for within-species relationships are not shown for very short branches but are shown in Figures S1 through S3. Closed circles indicate clusters identified by the clustering analysis. Colors represent traditional species memberships. Diamonds indicate taxonomic species and monophyletic groups of Rotaria. Names refer to the species, the country, the number of site within that country for that species, and the number of individual from that site if several were isolated; for example, R.macr.IT.1.1 refers to the first individual from site 1 in Italy for R. macrura. Pictures of trophi from one individual from each cluster are shown to scale: Representatives of all sampled populations are shown in Figure S4. A full list of names and localities of samples is available in Table S1.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC1828144&req=5

pbio-0050087-g003: Phylogenetic Relationships in the Genus RotariaThe consensus of 80,000 sampled trees from Bayesian analysis of the combined cox1 and 28S rDNA data sets is shown, displaying all compatible groupings and with average branch lengths proportional to numbers of substitutions per site under a separate GTR + invgamma substitution model for the cox1 and 28S partitions. Posterior probabilities above 0.5 and bootstrap support above 50% from a maximum parsimony bootstrap analysis are shown above and below each branch, respectively. Support values for within-species relationships are not shown for very short branches but are shown in Figures S1 through S3. Closed circles indicate clusters identified by the clustering analysis. Colors represent traditional species memberships. Diamonds indicate taxonomic species and monophyletic groups of Rotaria. Names refer to the species, the country, the number of site within that country for that species, and the number of individual from that site if several were isolated; for example, R.macr.IT.1.1 refers to the first individual from site 1 in Italy for R. macrura. Pictures of trophi from one individual from each cluster are shown to scale: Representatives of all sampled populations are shown in Figure S4. A full list of names and localities of samples is available in Table S1.
Mentions: We collected all individuals of Rotaria encountered during 3 y searching rivers, standing water, dry mosses, and lichens, centered on Italy and the United Kingdom but also globally [35]. Individuals were identified to belong to nine taxonomic species (Tables S1 and S2). Most of the described species of Rotaria missing from our sample are known from only one record or are very rarely encountered (Protocol S1). Bayesian and maximum parsimony analyses of mitochondrial cytochrome oxidase I (cox1) and nuclear 28S ribosomal DNA sequences provide strong support for the monophyly of taxonomic species (Figures 3, S1, S2, and S3 and Text S1), with the sole exception of R. rotatoria, which was already suspected to comprise a species complex based on disagreements among authors [36,37].

Bottom Line: Some of the morphologically coherent groups experiencing divergent selection contain several genetic clusters, in common with findings of cryptic species in sexual organisms.Our results show that the main causes of speciation in sexual organisms, population isolation and divergent selection, have the same qualitative effects in an asexual clade.The study also demonstrates how combined molecular and morphological analyses can shed new light on the evolutionary nature of species.

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Biologia, Università di Milano, Milan, Italy.

ABSTRACT
Asexuals are an important test case for theories of why species exist. If asexual clades displayed the same pattern of discrete variation as sexual clades, this would challenge the traditional view that sex is necessary for diversification into species. However, critical evidence has been lacking: all putative examples have involved organisms with recent or ongoing histories of recombination and have relied on visual interpretation of patterns of genetic and phenotypic variation rather than on formal tests of alternative evolutionary scenarios. Here we show that a classic asexual clade, the bdelloid rotifers, has diversified into distinct evolutionary species. Intensive sampling of the genus Rotaria reveals the presence of well-separated genetic clusters indicative of independent evolution. Moreover, combined genetic and morphological analyses reveal divergent selection in feeding morphology, indicative of niche divergence. Some of the morphologically coherent groups experiencing divergent selection contain several genetic clusters, in common with findings of cryptic species in sexual organisms. Our results show that the main causes of speciation in sexual organisms, population isolation and divergent selection, have the same qualitative effects in an asexual clade. The study also demonstrates how combined molecular and morphological analyses can shed new light on the evolutionary nature of species.

Show MeSH