Limits...
Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study.

de Mos M, Koevoet WJ, Jahr H, Verstegen MM, Heijboer MP, Kops N, van Leeuwen JP, Weinans H, Verhaar JA, van Osch GJ - BMC Musculoskelet Disord (2007)

Bottom Line: The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs).Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations.This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Orthopaedics, Erasmus MC, University Medical Centre Rotterdam, CA, The Netherlands. m.demos@erasmusmc.nl <m.demos@erasmusmc.nl>

ABSTRACT

Background: Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential.

Methods: Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs).

Results: Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but alpha-SMA (marker for smooth muscle cells and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG (peroxisome proliferative activated receptor gamma). In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations.

Conclusion: This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis.

Show MeSH

Related in: MedlinePlus

Immunohistochemical staining for collagen type 2 on tendon-derived fibroblasts. 5% of the cells cultured for 21 days in alginate beads in chondrogenic medium stained positive (A). Cells cultured in monolayer in control medium remained negative (B) as did cells in adipogenic or osteogenic media (figures not shown).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC1808058&req=5

Figure 4: Immunohistochemical staining for collagen type 2 on tendon-derived fibroblasts. 5% of the cells cultured for 21 days in alginate beads in chondrogenic medium stained positive (A). Cells cultured in monolayer in control medium remained negative (B) as did cells in adipogenic or osteogenic media (figures not shown).

Mentions: Immunohistochemical staining for collagen type 2 was performed on tendon-derived fibroblasts cultured in chondrogenic, adipogenic, osteogenic, and control medium for 21 days. In all chondrogenic medium conditions approximately 5% of the cells stained positive for collagen type 2 (Figure 4A). Tendon-derived fibroblasts cultured in control medium (Figure 4B), as well as adipogenic and osteogenic medium were immunonegative for collagen type 2 (not shown). BMSC cultures showed a similar amount of collagen type 2 staining in chondrogenic medium (not shown).


Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study.

de Mos M, Koevoet WJ, Jahr H, Verstegen MM, Heijboer MP, Kops N, van Leeuwen JP, Weinans H, Verhaar JA, van Osch GJ - BMC Musculoskelet Disord (2007)

Immunohistochemical staining for collagen type 2 on tendon-derived fibroblasts. 5% of the cells cultured for 21 days in alginate beads in chondrogenic medium stained positive (A). Cells cultured in monolayer in control medium remained negative (B) as did cells in adipogenic or osteogenic media (figures not shown).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC1808058&req=5

Figure 4: Immunohistochemical staining for collagen type 2 on tendon-derived fibroblasts. 5% of the cells cultured for 21 days in alginate beads in chondrogenic medium stained positive (A). Cells cultured in monolayer in control medium remained negative (B) as did cells in adipogenic or osteogenic media (figures not shown).
Mentions: Immunohistochemical staining for collagen type 2 was performed on tendon-derived fibroblasts cultured in chondrogenic, adipogenic, osteogenic, and control medium for 21 days. In all chondrogenic medium conditions approximately 5% of the cells stained positive for collagen type 2 (Figure 4A). Tendon-derived fibroblasts cultured in control medium (Figure 4B), as well as adipogenic and osteogenic medium were immunonegative for collagen type 2 (not shown). BMSC cultures showed a similar amount of collagen type 2 staining in chondrogenic medium (not shown).

Bottom Line: The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs).Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations.This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Orthopaedics, Erasmus MC, University Medical Centre Rotterdam, CA, The Netherlands. m.demos@erasmusmc.nl <m.demos@erasmusmc.nl>

ABSTRACT

Background: Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential.

Methods: Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs).

Results: Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but alpha-SMA (marker for smooth muscle cells and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG (peroxisome proliferative activated receptor gamma). In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations.

Conclusion: This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis.

Show MeSH
Related in: MedlinePlus