Limits...
Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study.

de Mos M, Koevoet WJ, Jahr H, Verstegen MM, Heijboer MP, Kops N, van Leeuwen JP, Weinans H, Verhaar JA, van Osch GJ - BMC Musculoskelet Disord (2007)

Bottom Line: The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs).Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations.This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Orthopaedics, Erasmus MC, University Medical Centre Rotterdam, CA, The Netherlands. m.demos@erasmusmc.nl <m.demos@erasmusmc.nl>

ABSTRACT

Background: Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential.

Methods: Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs).

Results: Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but alpha-SMA (marker for smooth muscle cells and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG (peroxisome proliferative activated receptor gamma). In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations.

Conclusion: This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis.

Show MeSH

Related in: MedlinePlus

Ki-67, D7-FIB, and α-SMA staining on tendon explants (day 6 of explantation period) and on tendon-derived fibroblasts (TDF) in monolayer culture. Ki-67 positive (proliferating) cells in the explants were located in the tendinous tissue (A, black arrow), in the endotenon (A, white arrow), and in the vascular walls (A, circle). Cells in the tendon tissue and in the endotenon stained positive for fibroblastmarker D7-FIB (B). Cells in the vascular walls remained negative for D7-FIB (B) and instead stained positive for α-SMA, a marker for pericytes and smooth muscle cells (C). All TDFs in monolayer culture stained positive for D7-FIB from passage one (D) to passage four (E) and remained negative for α-SMA from passage one (F) to passage four (G).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC1808058&req=5

Figure 1: Ki-67, D7-FIB, and α-SMA staining on tendon explants (day 6 of explantation period) and on tendon-derived fibroblasts (TDF) in monolayer culture. Ki-67 positive (proliferating) cells in the explants were located in the tendinous tissue (A, black arrow), in the endotenon (A, white arrow), and in the vascular walls (A, circle). Cells in the tendon tissue and in the endotenon stained positive for fibroblastmarker D7-FIB (B). Cells in the vascular walls remained negative for D7-FIB (B) and instead stained positive for α-SMA, a marker for pericytes and smooth muscle cells (C). All TDFs in monolayer culture stained positive for D7-FIB from passage one (D) to passage four (E) and remained negative for α-SMA from passage one (F) to passage four (G).

Mentions: During the explant culture period, proliferating cells (Ki-67 positive) were located between the highly organized collagen fibres of the tendon tissue and also in the connective tissue of the endotenon. These cells stained positive for fibroblast-marker D7-FIB. On the other hand, proliferating cells were also seen in the vascular walls, staining negative for D7-FIB but positive for α-SMA, a marker for pericytes and smooth muscle cells (Figure 1).


Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study.

de Mos M, Koevoet WJ, Jahr H, Verstegen MM, Heijboer MP, Kops N, van Leeuwen JP, Weinans H, Verhaar JA, van Osch GJ - BMC Musculoskelet Disord (2007)

Ki-67, D7-FIB, and α-SMA staining on tendon explants (day 6 of explantation period) and on tendon-derived fibroblasts (TDF) in monolayer culture. Ki-67 positive (proliferating) cells in the explants were located in the tendinous tissue (A, black arrow), in the endotenon (A, white arrow), and in the vascular walls (A, circle). Cells in the tendon tissue and in the endotenon stained positive for fibroblastmarker D7-FIB (B). Cells in the vascular walls remained negative for D7-FIB (B) and instead stained positive for α-SMA, a marker for pericytes and smooth muscle cells (C). All TDFs in monolayer culture stained positive for D7-FIB from passage one (D) to passage four (E) and remained negative for α-SMA from passage one (F) to passage four (G).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC1808058&req=5

Figure 1: Ki-67, D7-FIB, and α-SMA staining on tendon explants (day 6 of explantation period) and on tendon-derived fibroblasts (TDF) in monolayer culture. Ki-67 positive (proliferating) cells in the explants were located in the tendinous tissue (A, black arrow), in the endotenon (A, white arrow), and in the vascular walls (A, circle). Cells in the tendon tissue and in the endotenon stained positive for fibroblastmarker D7-FIB (B). Cells in the vascular walls remained negative for D7-FIB (B) and instead stained positive for α-SMA, a marker for pericytes and smooth muscle cells (C). All TDFs in monolayer culture stained positive for D7-FIB from passage one (D) to passage four (E) and remained negative for α-SMA from passage one (F) to passage four (G).
Mentions: During the explant culture period, proliferating cells (Ki-67 positive) were located between the highly organized collagen fibres of the tendon tissue and also in the connective tissue of the endotenon. These cells stained positive for fibroblast-marker D7-FIB. On the other hand, proliferating cells were also seen in the vascular walls, staining negative for D7-FIB but positive for α-SMA, a marker for pericytes and smooth muscle cells (Figure 1).

Bottom Line: The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs).Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations.This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Orthopaedics, Erasmus MC, University Medical Centre Rotterdam, CA, The Netherlands. m.demos@erasmusmc.nl <m.demos@erasmusmc.nl>

ABSTRACT

Background: Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential.

Methods: Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs).

Results: Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but alpha-SMA (marker for smooth muscle cells and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG (peroxisome proliferative activated receptor gamma). In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations.

Conclusion: This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis.

Show MeSH
Related in: MedlinePlus